fast polarization for processes with memory
play

Fast Polarization for Processes with Memory Joint work with Eren S - PowerPoint PPT Presentation

Fast Polarization for Processes with Memory Joint work with Eren S as o glu and Boaz Shuval 1/32 Polar codes in one slide X N Y N 1 1 W Polar coding Information vector : U k 1 1 = f ( 1 ) Padding : U N U k 1 = U N 1


  1. Fast Polarization for Processes with Memory Joint work with Eren S ¸as ¸o˘ glu and Boaz Shuval 1/32

  2. Polar codes in one slide X N Y N 1 1 W Polar coding ◮ Information vector : ˜ U k 1 1 = f (˜ 1 ) ◮ Padding : U N U k 1 = U N 1 · G − 1 ◮ Encoding : X N N ◮ Decoding : Successively, deduce U i from U i − 1 and Y N 1 1 2/32

  3. Polar codes in two slides: [Arıkan:09], [ArıkanTelatar:09] ◮ Setting : binary-input, symmetric, memoryless channel 1 = X N 1 · G N ◮ Polar transform : U N ⇐ ⇒ X N U N uniform uniform 1 1 ◮ Low entropy indices : Fix β < 1 / 2 � 1 ) < 2 − N β � i : P error ( U i | U i − 1 Λ N = , Y N 1 ◮ Polarization : Let X N 1 be uniform 1 N | Λ N | = I ( X 1 ; Y 1 ) lim N →∞ ◮ Coding scheme : ◮ For i ∈ Λ N , set U i equal to information bits (uniform) ◮ Set remaining U i to uniform values, reveal to decoder 1 = U N 1 · G − 1 ◮ Transmit X N as codeword N 3/32

  4. In this talk Setting : binary-input, symmetric, memoryless channel 4/32

  5. In this talk Setting : binary-input, symmetric, memoryless channel 4/32

  6. In this talk Setting : binary-input, symmetric, memoryless channel 4/32

  7. In this talk Setting : binary-input, symmetric, memoryless channel 4/32

  8. In this talk Setting : binary-input, symmetric, ✭✭✭✭✭✭ ❤❤❤❤❤❤ ✭ memoryless channel ❤ 4/32

  9. Polar codes: [S ¸as ¸o˘ glu+:09], [KoradaUrbanke:10], [HondaYamamoto:13] ◮ Setting : Memoryless i.i.d. process ( X i , Y i ) N i = 1 ◮ For simplicity : Assume X i binary 1 = X N 1 · G N ◮ Polar transform : U N ◮ Index sets : � 1 ) < 2 − N β � Λ N = i : P error ( U i | U i − 1 , Y N Low entropy: 1 � 2 − 2 − N β � 1 ) > 1 Ω N = i : P error ( U i | U i − 1 , Y N High entropy: 1 ◮ Polarization : 1 N | Λ N | = 1 − H ( X 1 | Y 1 ) lim N →∞ 1 N | Ω N | = H ( X 1 | Y 1 ) lim N →∞ 5/32

  10. Polar codes: [S ¸as ¸o˘ glu+:09], [KoradaUrbanke:10], [HondaYamamoto:13] Optimal rate for: ◮ Coding for non-symmetric memoryless channels ◮ Coding for memoryless channels with non-binary inputs ◮ (Lossy) compression of memoryless sources Question ◮ How to handle memory? 6/32

  11. Roadmap Index sets � � i : P error ( U i | U i − 1 Λ N ( ǫ ) = , Y N 1 ) < ǫ Low entropy: 1 � � 1 ) > 1 i : P error ( U i | U i − 1 Ω N ( ǫ ) = , Y N 2 − ǫ High entropy: 1 Plan ◮ Define framework for handling memory ◮ Establish: ◮ Slow polarization: for ǫ > 0 fixed , 1 N | Λ N ( ǫ ) | = 1 − H ⋆ ( X | Y ) lim N →∞ 1 N | Ω N ( ǫ ) | = H ⋆ ( X | Y ) lim N →∞ N H ( X N 1 | Y N 1 ) lim N →∞ 1 ◮ Fast polarization: also holds for ǫ = 2 − N β ◮ What is β ? 7/32

  12. A framework for memory ◮ Process : ( X i , Y i , S i ) N i = 1 ◮ Finite number of states : S i ∈ S , where |S| < ∞ ◮ Hidden state : S i is unknown to encoder and decoder ◮ Probability distribution : P ( x i , y i , s i | s i − 1 ) ◮ Stationary : same for all i ◮ Markov : P ( x i , y i , s i | s i − 1 ) = P ( x i , y i , s i |{ x j , y j , s j } j < i ) ◮ State sequence : aperiodic and irreducible Markov chain 8/32

  13. Example 1 ◮ Model : Finite state channel P s ( y | x ) , s ∈ S ◮ Input distribution : X i i.i.d. and independent of state ◮ State transition : π ( s i | s i − 1 ) ◮ Distribution : P ( x i , y i , s i | s i − 1 ) = P ( x i ) π ( s i | s i − 1 ) P s i ( y i | x i ) 9/32

  14. Example 2 ◮ Model : ISI + noise Y i = h 0 X i + h 1 X i − 1 + · · · + h m X i − m + noise ◮ Input : X i has memory P ( x i | x i − 1 , x i − 2 , . . . , x i − m , x i − m − 1 ) ◮ State : � � S i = · · · X i X i − 1 X i − m ◮ Distribution : For x i , s i , s i − 1 compatible, P ( x i , y i , s i | s i − 1 ) = P noise ( y i | h T s i ) · P ( x i | s i − 1 ) 10/32

  15. Example 3 ◮ Model : ( d , k ) -RLL constrained system with noise ( 1 , ∞ ) -RLL Constraint 1 0 0 11/32

  16. Example 3 ◮ Model : ( d , k ) -RLL constrained system with noise ( 1 , ∞ ) -RLL Constraint 1 X N Y N 1 1 BSC ( p ) 0 0 11/32

  17. Example 3 ◮ Model : ( d , k ) -RLL constrained system with noise ( 1 , ∞ ) -RLL Constraint 1 X N Y N 1 − α 1 1 BSC ( p ) α 0 1 0 state Markov chain 0 / 0 1 / 0 α ( 1 − p ) ( 1 − α )( p ) 1 / 1 ( 1 − α ) ( 1 − ) p P ( x i , y i , s i | s i − 1 ) ( 1 1 − ) p 0 / 0 1 ( p ) α ( p ) 1 / 0 0 / 1 11/32

  18. Example 4 ◮ Model : Lossy compression of a source with memory Lossy compression Y N X N 1 1 ◮ Source distribution : P s ( y ) , s ∈ S ◮ State transition : π ( s i | s i − 1 ) ◮ Distortion : test channel P ( x | y ) ◮ Distribution : P ( x i , y i , s i | s i − 1 ) = π ( s i | s i − 1 ) P s i ( y i ) P ( x i | y i ) 12/32

  19. Polar codes: [S ¸as ¸o˘ glu:11], [S ¸as ¸o˘ gluTal:16], [ShuvalTal:17] ◮ Setting : Process ( X i , Y i , S i ) N i = 1 with memory, as above ◮ Hidden state : State unknown to encoder and decoder 1 = X N 1 · G N ◮ Polar transform : U N U N 1 are neither independent, nor identically distributed ◮ Index sets : Fix β < 1 / 2 � 1 ) < 2 − N β � i : P error ( U i | U i − 1 Λ N = , Y N Low entropy: 1 � 2 − 2 − N β � 1 ) > 1 Ω N = i : P error ( U i | U i − 1 , Y N High entropy: 1 ◮ Polarization : 1 N | Λ N | = 1 − H ⋆ ( X | Y ) lim N →∞ 1 N | Ω N | = H ⋆ ( X | Y ) lim N →∞ N H ( X N 1 | Y N 1 ) lim N →∞ 1 13/32

  20. Achievable rate ◮ Achievable rate : In all examples, R approaches 1 I ⋆ ( X ; Y ) = lim NI ( X N 1 ; Y N 1 ) N →∞ ◮ Successive cancellation : [Wang+:15] 14/32

  21. Mixing Consider the process ( X i , Y i ) — hidden state · · · · · · · · · X L + 1 X M + 1 X M + 2 X 1 X 2 X L X M X N · · · · · · · · · Y 1 Y 2 Y L Y L + 1 Y M Y M + 1 Y M + 2 Y N Then, there exist ψ ( k ) , k ≥ 0, such that M + 1 ≤ ψ ( M − L ) · P X L 1 · P X N P X L 1 , Y L 1 , X N M + 1 , Y N 1 , Y L M + 1 , Y N M + 1 where: ◮ ψ ( 0 ) < ∞ ◮ ψ ( k ) → 1 15/32

  22. Three parameters ◮ Joint distribution P ( x , y ) ◮ For simplicity: X ∈ { 0 , 1 } ◮ Parameters : H ( X | Y ) = − � x , y P ( x , y ) log P ( x | y ) Entropy � Z ( X | Y ) = 2 � P ( 0 , y ) P ( 1 , y ) Bhattacharyya y K ( X | Y ) = � y | P ( 0 , y ) − P ( 1 , y ) | T.V. distance ◮ Connections : H ≈ 0 ⇐ ⇒ Z ≈ 0 ⇐ ⇒ K ≈ 1 H ≈ 1 ⇐ ⇒ Z ≈ 1 ⇐ ⇒ K ≈ 0 16/32

  23. Three processes For n = 1 , 2 , . . . { X i , Y i , S i } ◮ N = 2 n 1 = X N ◮ U N 1 G N { X i , Y i } ◮ Pick B n ∈ { 0 , 1 } uniform, i.i.d. ◮ Random index from { 1 , 2 , . . . , N } i = 1 + � B 1 B 2 · · · B n � 2 ◮ Processes : H n = H ( U i | U i − 1 , Y N 1 ) Entropy 1 Z n = Z ( U i | U i − 1 , Y N 1 ) Bhattacharyya 1 K n = K ( U i | U i − 1 , Y N 1 ) T.V. distance 1 17/32

  24. Proof — memoryless case Slow polarization Fast polarization � B n + 1 = 0 2 Z n H n ∈ ( ǫ, 1 − ǫ ) Z n + 1 ≤ B n + 1 = 1 Z 2 n | H n + 1 − H n | > 0 1 N | Λ N | − n →∞ 1 − H ( X 1 | Y 1 ) − − → Low entropy set New � B n + 1 = 0 K 2 K n + 1 ≤ n B n + 1 = 1 2 K n 1 N | Ω N | − n →∞ H ( X 1 | Y 1 ) − − → High entropy set 18/32

  25. ❍❍ ✟ Proof — memory ✟✟ less case ❍ { X i , Y i , S i } Slow polarization Fast polarization { X i , Y i } � 2 ψ Z n B n + 1 = 0 H n ∈ ( ǫ, 1 − ǫ ) Z n + 1 ≤ ψ Z 2 B n + 1 = 1 n | H n + 1 − H n | > 0 1 N | Λ N | − n →∞ 1 − H ⋆ ( X | Y ) − − → Low entropy set � ψ ˆ B n + 1 = 0 K 2 1 ˆ ψ = ψ ( 0 ) = max K n + 1 ≤ n π ( s ) 2 ˆ B n + 1 = 1 s K n π : stationary state distribution 1 N | Ω N | − n →∞ H ⋆ ( X | Y ) − − → High entropy set 19/32

  26. Notation ◮ Two consecutive blocks : ( X N 1 , Y N 1 ) and ( X 2 N N + 1 , Y 2 N N + 1 ) . ◮ Polar transform : 1 = X N 1 · G N U N 1 = X 2 N N + 1 · G N V N ◮ Random index : i = 1 + � B 1 B 2 · · · B n � 2 ◮ Notation : Q i = ( U i − 1 , Y N 1 ) 1 R i = ( V i − 1 , Y 2 N N + 1 ) 1 20/32

  27. Slow polarization 1 = X N U N 1 · G N V N 1 = X 2 N N + 1 · G N ◮ H n is a supermartingale Q i = ( U i − 1 1 ) , Y N 1 R i = ( V i − 1 H n = H ( U i | Q i ) = H ( V i | R i ) N + 1 ) , Y 2 N 1 � H ( U i + V i | Q i , R i ) B n + 1 = 0 H n + 1 = H ( V i | U i + V i , Q i , R i ) B n + 1 = 1 By the chain rule: � � E [ H n + 1 | H n , . . . ] = 1 H ( U i + V i | Q i , R i ) + H ( V i | U i + V i , Q i , R i ) 2 = 1 2 H ( U i + V i , V i | Q i , R i ) = 1 2 H ( U i , V i | Q i , R i ) ≤ 1 2 H ( U i | Q i ) + 1 2 H ( V i | R i ) = H n 21/32

  28. Slow polarization 1 = X N U N 1 · G N V N 1 = X 2 N N + 1 · G N Convergence Q i = ( U i − 1 1 ) , Y N 1 ◮ H n is a supermartingale R i = ( V i − 1 N + 1 ) , Y 2 N 1 ◮ 0 ≤ H n ≤ 1 H n converges a.s. and in L 1 to H ∞ Polarization ◮ H ∞ ∈ [ 0 , 1 ] ◮ We need: H ∞ ∈ { 0 , 1 } ◮ Easy if ( U N 1 , Q N 1 ) and ( V N 1 , R N 1 ) were independent ◮ They are not: Y N ∈ Q N 1 and Y N + 1 ∈ R N 1 ◮ But: for almost all i , we have I ( U i ; V i | Q i , R i ) < ǫ ◮ Enough? No. Need to show that Q i and R i can’t cooperate to stop polarization 22/32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend