explaining fermi liquid stability with ads black holes
play

Explaining Fermi Liquid stability with AdS Black holes Koenraad - PowerPoint PPT Presentation

Explaining Fermi Liquid stability with AdS Black holes Koenraad Schalm Institute Lorentz for Theoretical Physics Leiden University Mihailo Cubrovic, Jan Zaanen, Koenraad Schalm arxiv/0904.1993 arxiv/1011.XXXX . . . GGI Firenze 2010 Crete


  1. Explaining Fermi Liquid stability with AdS Black holes Koenraad Schalm Institute Lorentz for Theoretical Physics Leiden University Mihailo Cubrovic, Jan Zaanen, Koenraad Schalm arxiv/0904.1993 arxiv/1011.XXXX . . . GGI Firenze 2010 Crete Sep 2010 Friday, November 5, 2010

  2. AdS/CMT Black Hole physics Rich = Friday, November 5, 2010

  3. Charged Black-hole Hair • The origin of rich black hole physics – Instability of charged Black holes [e.g. Gubser @ Strings 2009] � . . . + ¯ φ ( A 0 ) 2 φ + . . . m 2 φ ∼ − A 2 S = ⇔ 0 – The holographic superconductor [Hartnoll, Herzog, Horowitz] r = ∞ + + + + + + r = r H ++++++++++++ + + + + + + + Friday, November 5, 2010

  4. BH Stability • AdS/CFT: Ground state stability is BH stability Z CFT ( φ ) = exp S on − shell ( φ ( φ ∂ AdS = J )) AdS Friday, November 5, 2010

  5. Bosons vs. Fermions • What about Fermions? � √− g � R + 6 − 1 � A Γ A ( D M + igA M ) Ψ − m ¯ 4 F 2 − ¯ Ψ e M S = + S bnd ΨΨ – No perturbative instability (no superradiance) Friday, November 5, 2010

  6. Searching for the Fermi-liquid groundstate Conjecture AdS-RN BH with Fermions is metastable. • – AdS-RN cannot be the true groundstate − Large groundstate entropy S CF T = A H 4 G N − ω 2 dt 2 + d ω 2 � � ω 2 + dx i dx i ds 2 L 2 = Near horizon 2 – Should exist 1st order transition to AdS Fermi-hair BH − Similar indications from [Faulkner et al (unpublished)] , [Hartnoll, Polchinski, Silverstein, Tong] , [ Kraus et al.] Friday, November 5, 2010

  7. Searching for the Fermi-liquid groundstate • What is the true dual groundstate ? – “Free Fermi-gas” in the bulk. PROBLEM: – Fermi-Dirac statistics demands non-local behavior in AdS [always true for multiple Fermions] Non-local RG flow?! Friday, November 5, 2010

  8. Searching for the Fermi-liquid groundstate • What is the true dual groundstate ? – “Free Fermi-gas” in the bulk. PROBLEM: – Fermi-Dirac statistics demands non-local behavior in AdS [always true for multiple Fermions] SOLUTION: – Need some local approximation: − Integrate out the fermions [Kraus..] − Fluid/Thomas Fermi approximation [de Boer et al, Hartnoll et al.] − Single fermion In all cases we wish to know how the fields behave at ∂ AdS to read off what happens in the CFT Friday, November 5, 2010

  9. Fermi gas in a confining potential • In all cases we wish to know how the fields behave at ∂ AdS to read off what happens in the CFT. – AdS acts like a confining potential well. What is it the behavior of the Fermi gas at infinity? − Consider a spinless fermion in a d -dim harmonic oscillator potential well − ∂ 2 2 m + m ω 2 r 2 ¯ x � Ψ = E Ψ , ρ ( r ) = Ψ E ( r ) Ψ E ( r ) 2 E<E F • Thomas-Fermi: • Exact answer fluid is confined and has a long range tail: [Brack, an edge L 2 = 2 /m ω van Zyl] ω − r 2 E F / ω ρ T F ∝ ( E F a i L i (4 r 2 L 2 ) d/ 2 L 2 ) e − 2 r 2 /L 2 � ρ exact ∝ i =0 Friday, November 5, 2010

  10. Fermi gas in a confining potential • In all cases we wish to know how the fields behave at ∂ AdS to read off what happens in the CFT. – AdS acts like a confining potential well. What is it the behavior of the Fermi gas at infinity? − Consider a spinless fermion in a d -dim harmonic oscillator potential well − ∂ 2 2 m + m ω 2 r 2 ¯ � x Ψ = E Ψ , ρ ( r ) = Ψ E ( r ) Ψ E ( r ) 2 E<E F – Far away, confined composite “gas” should approximate a “point particle” 1.003 1.002 Normalized Ratio of fluid density to single particle den- 1.001 Out[18]= − sity in same V ( r ) with 1.000 n = E F / 2 ω for n = 1 , 20 , 100 0.999 0 200 400 600 800 1000 Friday, November 5, 2010

  11. Take it and run... • We wish to know how the behavior at ∂ AdS to read off what happens in the CFT. Conjecture: Study a single Dirac particle in the presence of a BH – This “hydrogen atom” captures the dynamics at ∂ AdS Single particle but large Backreaction — if charge is macroscopic – Expect a Lifschitz S = 0 solution for any charge q F Friday, November 5, 2010

  12. Building an holographic Fermi-liquid • Instead of Ψ , work directly with probability density ± ≡ ¯ J µ Ψ ± i γ µ Ψ ± – Obtain dynamics for composite fields... ± ≡ ¯ Ψ ± i γ µ Ψ ± , I = ¯ J µ Ψ + Ψ − , A 0 = Φ – Infer “equations of motion” from EOM of Ψ ± ∓ Φ ( ∂ z + 2 A ± ) J 0 = f I. ± 2 Φ f ( J 0 + − J 0 ( ∂ z + A + + A − ) I = − ) 1 ∂ 2 2 z 3 √ f ( J 0 + + J 0 = − ) z Φ − − 1 � 3 − zf ′ � ± mL Recall = A ± z √ f 2 z 2 f Friday, November 5, 2010

  13. Building an holographic Fermi-liquid • “Entropy Collapse” to a Lifshitz BH [also Hartnoll, Polchinski, Silverstein, Tong] – Boundary conditions at the horizon z = 1 ... J ± (1 − z ) − 1 / 2 + . . . J 0 = ± I hor (1 − z ) − 1 / 2 + . . . = I hor (1 − z ) ln( z − 1) + Φ (2) (1) = Φ hor (1 − z ) + . . . . Φ – Φ (1) hor corresponds to a “source” on the horizon, (infinite backreaction) – Dynamically Φ (1) hor = 0 J ± = 0 = I hor → “Dirac Hair” requires (mild) backreaction at the horizon ⇒ Friday, November 5, 2010

  14. Building a holographic Fermi-liquid • A holographic Migdal’s relation – Boundary behavior of the Dirac field A + z 3 / 2 − m + B + z 5 / 2+ m + . . . Ψ + = A − z 5 / 2+ m + B − z 5 / 2 − m + . . . Ψ − = – Recall that for bosons Φ = Jz ∆ + � O � J z d − ∆ + . . . – Spontaneous symmetry breaking [Gubser, Hartnoll, Herzog, Horowitz] : solution with J = 0 , � O � � = 0 . J = 0 is the quasinormal mode. Friday, November 5, 2010

  15. Building a holographic Fermi-liquid • A holographic Migdal’s relation – Boundary behavior of the Dirac field A + z 3 / 2 − m + B + z 5 / 2+ m + . . . = Ψ + A − z 5 / 2+ m + B − z 5 / 2 − m + . . . = Ψ − – For fermions the Green’s function ω − v F ( k − k F ) + reg = B − Z G ( ω , k ) = A + – For A ± ( k F ) = 0 , B − ( k F ) cannot be a fermionic vev. Instead A + ( k F ) = | B − ( k F ) | 2 Z ≃ B − ( k F ) n F ( k ) Migdal: n F : Z ∂ ω W k → Friday, November 5, 2010

  16. The meaning of J − • The Green’s function (bulk extension) G ( z ) = Ψ − ( z ) S Ψ − 1 + ( z ) , D + A ± Ψ ± = − / / T Ψ ∓ – Convenient way to solve G directly T Ψ + ( z ) S Ψ − 1 ∂ z G = ( A + − A − ) G + G/ T G − / + ( z ) – Consider however the combinations ( Γ I = { 1 1 , γ i , γ ij , . . . } ) ± ( z ) = ¯ + ( z 0 )¯ J I Ψ − 1 Ψ ± ( z ) Γ I Ψ ± ( z ) Ψ − 1 + ( z 0 ) G I ( z ) = ¯ + ( z 0 )¯ Ψ − 1 Ψ + ( z ) Γ I Ψ − ( z ) S Ψ − 1 + ( z ) If T i has only a single nonvanishing component, these are the same equations as before. Friday, November 5, 2010

  17. The meaning of J − • The Green’s function (bulk extension) G ( z ) = Ψ − ( z ) S Ψ − 1 + ( z ) , D + A ± Ψ ± = − / / T Ψ ∓ – Consider the combinations ( Γ I = { 1 1 , γ i , γ ij , . . . } ) ± ( z ) = ¯ + ( z 0 )¯ J I Ψ − 1 Ψ ± ( z ) Γ I Ψ ± ( z ) Ψ − 1 + ( z 0 ) G I ( z ) = ¯ + ( z 0 )¯ Ψ − 1 Ψ + ( z ) Γ I Ψ − ( z ) S Ψ − 1 + ( z ) – For generic ω , k : + ) − 1 ¯ J I − ( z 0 ) = ( J 1 1 G Γ I G Friday, November 5, 2010

  18. The meaning of J − • The Green’s function (bulk extension) G ( z ) = Ψ − ( z ) S Ψ − 1 + ( z ) , D + A ± Ψ ± = − / / T Ψ ∓ – Consider the combinations ( Γ I = { 1 1 , γ i , γ ij , . . . } ) ± ( z ) = ¯ + ( z 0 )¯ J I Ψ − 1 Ψ ± ( z ) Γ I Ψ ± ( z ) Ψ − 1 + ( z 0 ) G I ( z ) = ¯ + ( z 0 )¯ Ψ − 1 Ψ + ( z ) Γ I Ψ − ( z ) S Ψ − 1 + ( z ) – For pole ω ( k ) : J I Γ I G | on − shell = − Tr γ 0 G F ( ω ( k )) | on − shell = f F D ( T, ω ( k )) ρ states ( ω ( k )) . J − ( ω ( k ) , k ) = n F ( k ) Friday, November 5, 2010

  19. Building an holographic Fermi-liquid “Proof” AdS-RN BH with Fermions is metastable. • � 4 1.2 x 10 n F density 1 0.8 Re J 0.6 0.4 T c ≈ 0.075 ( µ /T) c ≈ 3 0.2 0 0.02 0.04 0.06 0.08 0.1 (vdW liquid to FL transition T as in He 3 .) Friday, November 5, 2010

  20. Building an holographic Fermi-liquid “Proof” AdS-RN BH with Fermions is metastable. • � 4 1.2 x 10 ! + 023/4-536 ! ,75/897,:;./,3<3,:;. n F density -==/7>/>23/?36@:/3;36.A/897,3 1 ! * ! ) 0.8 ! '( ,-./ ! 1 ( " Re J 0.6 ! '' ! 1 " / # /0 / ! '#&& 0.4 T c ≈ 0.075 ! '& ( µ /T) c ≈ 3 0.2 ! '% ! '$ 0 ! ! ! "#" ! " ! $#" ! $ ! %#" ! % ! &#" ! & 0.02 0.04 0.06 0.08 0.1 ,-./0 T Friday, November 5, 2010

  21. Building an holographic Fermi-liquid “Proof” AdS-RN BH with Fermions is metastable. • � 4 1.2 x 10 !"$ - n F density ! 1 ! !"$ 0.8 ! !"& Re J 0.6 ! !"( . / ! 010 2 ! 3 ! / 0.4 ! !"* T c ≈ 0.075 . " .2. / 3. " ( µ /T) c ≈ 3 ! # 0.2 ! #"$ - 0 ! !"!# !"!$ !"!% !"!& !"!' !"!( !"!) 0.02 0.04 0.06 0.08 0.1 T +, ! Friday, November 5, 2010

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend