experimental evaluation of w 45 recombination and w 44
play

Experimental evaluation of W 45+ recombination and W 44+ Ionization - PowerPoint PPT Presentation

14SEP2015 IAEA CM on W Deajeon, KAERI, Korea Experimental evaluation of W 45+ recombination and W 44+ Ionization cross-sections T. Nakano Japan Atomic Energy Agency Acknowledgements Dr. N. Nakamura (Univ. of Electro-Communications) Dr. H.


  1. 14SEP2015 IAEA CM on W Deajeon, KAERI, Korea � Experimental evaluation of W 45+ recombination and W 44+ Ionization cross-sections T. Nakano Japan Atomic Energy Agency Acknowledgements Dr. N. Nakamura (Univ. of Electro-Communications) Dr. H. Ohashi (Toyama Univ.)

  2. Tungsten: a candidate for PFCs in reactors � W plasma-facing component ! Merit : high melting point : high heat conductivity : low sputtering yield : low hydrogen (T) retention safety, economy � ⇒ ! Demerit : melting : cracking (Bulk W) : high Z (74) accumulation in plasma core ⇒ highly radiative ( n W / n e < 10 -5 ) ⇒ ⇒ W transport in plasmas For quantitative transport study, absolute W density is required. http://www.iter.org/mach/vacuumvessel �

  3. Various W atomic data needed for W density measurement � W spatial / charge state distribution <= Ioniz/recomb. rates � Ioniz.Eq / Transport model � (Fractional abundance of W q+ ) � nW q+ � nW � nW (total W density) � Plasma � nW q+ � I q+ � (W q+ density) � Line identification Photon Emission Coefficient <= spectral data � <= excitation rate, A coef, Energy level � Collisional-radiatve model �

  4. Availability of W atomic data Spectral data holdings at NIST* � 1 � Spectral data (wavelength, Acoef) : NIST is Worlds’ standard database But still far from ‘a complete set’ 20 � ⇒ Evaluated Atomic number � 40 � Mo � Collisional data ( Ioniz./recomb. Rates ): Derived data( Photon emission coef, 60 � Cooling rates ) : Present tokamak � ADAS high availability W � ⇒ Not evaluated 80 � ITER � *) NIST ASD version5. Charge � 40 � 60 � 80 � 20 � 1 � http://physics.nist.gov/ASD �

  5. W fractional abundance under Ionization equilibrium still different amongst datasets � W Fractional Abundance � 1 46+ � Fractional Abandance 44+ � 45+ � 0.1 0.01 ADPACK 3) � FLYCHK code 1) � 0.001 1 Fractional Abandance 0.1 0.01 LANL code 2) � ADAS 4) � 0.001 10 3 � 10 4 � 10 3 � 10 4 � 3 4 10 10 T e ( eV ) � T e ( eV ) � T e ( eV ) Uncertainty of collisional data ( Ioniz./Recomb. rates ) needed ⇒ Evaluation 3)K. Asmussen, et al., Nucl. Fusion 38 (1998) 967-986. 1)http://nlte.nist.gov/FLY/ 4)T. Puetterich et al PPCF 50 (2008) 085016. � 2)http://aphysics2.lanl.gov/tempweb/lanl/ �

  6. Issue 1: W density measurement � W spatial / charge state distribution <= Ioniz/recomb. rates � Ioniz.Eq / Transport model � 14% � (Fractional abundance of W 54+ ) � nW 54+ � nW � 7% � nW (total W density) � Factor of 2 deviation � Plasma � I 54+ � nW 54+ � Line identification Photon Emission Coefficient <= spectral data � <= excitation rate, A coef, Energy level � Collisional-radiatve model � *H.-K Chung et al., HEDP 9 (2013) 645. �

  7. Issue 2: W cooling rate � -24 3 ) 10 Radative power rate ( W cm L w * ** � L w = ! q L W q+ F a ( q ) -25 10 shifted � -26 10 2 4 6 8 2 4 6 8 2 4 2 3 4 10 10 10 T e ( eV ) Shift of the cooling rates originates from ioniz. Eq calculation *T Puetterich et al Nucl. Fusion 50 (2010) 025012 � **T Nakano et al J. Nucl. Mater 415 (2010) S327 �

  8. Issue 3: W density measurement � x10 -5 � 3 n W / n e from W 45+ line � +50% 20% lower 2 -50% -5 x10 1 0 x10 -5 � 0 1 2 3 -5 n W / n e from W 46+ line x10 Uncertainty of collisional data ( Ioniz./Recomb. rates ) needed *T. Nakano et al 41 st EPS conference (2014), submitted to J. Phys. B

  9. Outline � ! Introduction ! Motivation ! Evaluation of W 44+ ionization / W 45+ recombination - Experiment in Tokyo EBIT device - Calculations for Excitation Auto-ionization and Dielectronic Recombination by FAC - Comparison ! Conclusions

  10. Experimental setup � (W) � W source: W(CO) 6 � Format: 1340 x400 Pixel: 20 µ m Grating: 2400g/mm λ / Δλ = 1100 @ 5 nm Beam Energy : 2.5 – 3.3 keV Energy width : ~ 10 eV Beam Current: 20 – 50 mA * ) H. Ohashi et al, Rev. Sci. Instrum. 82 (2011) 083103

  11. Constant excitation rate ratio of W 44+ and W 45+ useful for direct comparison btw Exp and Theory � Excitation Xsec � Excitation rate � Measurement � I W45+ (6.2 nm): 4s 2 S 1/2 - 4p 2 P 3/2 = 45 + (4s,4p) • n W 45 + (4s) • n e C e I W44+ (6.1 nm): 4s4s 1 S 0 - 4s4p 1 P 1 � Close excitation energy (199 ev and 204 eV) Ioniz. Equi. � ⇒ Similar energy dependence of C e S 44 + → 45 + S 44 + → 45 + (Ioniz.Xsec) � (Ioniz.rate) � ~ 0.43 � • -21 -8 LANL 1.5 1.5 10 10 α 45 + → 44 + α 45 + → 44 + (Recomb.rate) � (Recomb.Xsec) � FAC 3 / s ) 2 ) Ratio of Excitation rates 44+ W ORNL 44+ excitation X sec. eXcitation cross-section ( m Calculation � 44+ W 45+ Excitation rate ( cm W -22 -9 1.0 1.0 10 10 45+ W 45+ / W 44+ ~ 0.44 W -10 -23 0.5 0.5 10 10 45+ / W 44+ ~ 0.43 W 45+ / W -11 -24 0.0 0.0 10 10 1 2 3 4 10 10 10 10 2 3 4 5 10 10 10 10 W E e ( eV ) T e ( eV )

  12. n W 45+ S 44+->45+ S = S direct (DI) + S excit.autoioniz. (EA) = � n W 44+ α 45+->44+ α = α radiative (RR)+ α die-electronic (DR) � -23 10 -24 10 DI -25 10 2 ) Xsec ( m -26 10 -27 10 -28 10 2400 2800 3200 3600 E e ( eV ) 6000 Term energy ( eV ) 4000 - e E e 45+ ) 10 4s Cu-like (W 3d 2000 10 4snl 3d direct ionization: DI 44+ ) 10 4s 2 Zn-like (W 3d 0

  13. n W 45+ S 44+->45+ S = S direct (DI) + S excit.autoioniz. (EA) = � n W 44+ α 45+->44+ α = α radiative (RR)+ α die-electronic (DR) � Term energy ( eV ) 6000 3d excited 3p excited 3s excited 2 nl 3s4s 5 4s 2 nl auto-ionization: 3p 4000 ........ 9 4s 2 nl e ........ 3d ........ 2 4l radiation: 3s4s 5 4s 2 4l 5l 3p 10 4s 3d 2000 9 4s 2 4l 3d 4s nl excitation: 10 4s 2 44+ ) 3d Zn-like (W 0 Ionization � 3d 10 4s 2 = Excitation => 3d 9 4s 2 nl = Auto-ionization => 3d 10 4s 3d 10 4s 2 = Excitation => 3d 9 4s 2 nl = Radiative decay => 3d 10 4s 2 � Excitation & emission � Need branching ratio! �

  14. n W 45+ S 44+->45+ S = S direct (DI) + S excit.autoioniz. (EA) = � n W 44+ α 45+->44+ α = α radiative (RR)+ α die-electronic (DR) � Term energy ( eV ) 6000 3d excited 3p excited 3s excited Total (W 44+ ) � 2 nl 3s4s 5 4s 2 nl auto-ionization: 3p 4000 ........ 9 4s 2 nl e ........ 3d ........ 2 4l radiation: 3s4s 5 4s 2 4l 5l 3p 10 4s 3d 2000 9 4s 2 4l 3d 4s nl Total (W 45+ ) � excitation: 10 4s 2 44+ ) 3d Zn-like (W 0 Cross sections (10 -24 m 2 ) � Excitation Auto-ionisation 3d excited(W 44+ ) � 3p excited(W 44+ ) � 3s excited(W 44+ ) � Electron energy (eV) �

  15. n W 45+ S 44+->45+ S = S direct (DI) + S excit.autoioniz. (EA) = � n W 44+ α 45+->44+ α = α radiative (RR)+ α die-electronic (DR) � -23 20 10 44+ density ratio EA -24 16 10 DI -25 12 10 2 ) Xsec ( m -26 8 10 45+ / W -27 4 10 W -28 0 10 2400 2800 3200 3600 E e ( eV ) Term energy ( eV ) 6000 3d excited 3p excited 3s excited 2 nl 3s4s 5 4s 2 nl auto-ionization: 3p 4000 ........ 9 4s 2 nl e ........ 3d ........ 2 4l radiation: 3s4s 5 4s 2 4l 5l 45+ ) 3p 10 4s Cu-like (W 3d 2000 9 4s 2 4l 3d 4s nl excitation: 10 4s 2 44+ ) 3d Zn-like (W 0

  16. n W 45+ S 44+->45+ S = S direct (DI) + S excit.autoioniz. (EA) = � n W 44+ α 45+->44+ α = α radiative (RR)+ α die-electronic (DR) � -23 20 10 44+ density ratio EA -24 16 10 DI -25 12 RR 10 2 ) Xsec ( m -26 8 10 45+ / W -27 4 10 W -28 0 10 2400 2800 3200 3600 E e ( eV ) 6000 Term energy ( eV ) 4000 - e E e 45+ ) 10 4s Cu-like (W 3d 2000 10 4snl 3d Radiative recombination: RR 44+ ) 10 4s 2 Zn-like (W 3d 0

  17. n W 45+ S 44+->45+ S = S direct (DI) + S excit.autoioniz. (EA) = � n W 44+ α 45+->44+ α = α radiative (RR)+ α die-electronic (DR) � 3s4s 5 4s ........ 3p ........ 9 4s 9 4s 3s4s9l ........ 3d 3d ........ ........ ........ 4s 9l Term energy ( eV ) Term energy ( eV ) Term energy ( eV ) Term energy ( eV ) 6000 6000 6000 6000 ........ 3s4s5l ........ 4s 9l 4s 9l 5 4s 5l 3d excited 3p excited 3s excited 3d excited 3p excited 3s excited 3p 4s 6l 4s 6l 2 10 10 9 4s 5l 9 4s 5l 5 4s 2 3s4s 3d 3d 3d 3d 3p 2 nl 2 nl 46+ ) 2 nl 3s4s 3s4s 9 4s 9 4s 2 2 Ni-like (W 5 4s 5 4s 2 nl 2 nl 3s4s 5 4s 2 nl 3d 3d auto-ionization: A a e D C 3p 3p 4000 4000 4000 4000 3p 6l 6l ........ ........ ........ 9 4s 9 4s 9 4s 9 4s 2 nl 2 nl 2 nl 2 nl e e ........ ........ ........ 3d 3d 3d 3d 5l 5l A r E e ........ ........ 2 4l 2 4l radiation: A a E e A r A r 2 4l 3s4s 3s4s 4l 4l 3s4s 5 4s 5 4s 5 4s 2 4l 2 4l 2 4l 5l 5l 5l 5l 45+ ) 45+ ) 3p 3p 3p 10 4s 10 4s 10 4s 10 4s Cu-like (W Cu-like (W 3d 3d 3d 3d 2000 2000 2000 2000 9 4s 9 4s 9 4s 9 4s 2 4l 2 4l 2 4l 2 4l 45+ ) 3d 3d 3d 3d 4s nl 4s nl 4s nl Cu-like (W excitation: 10 4s 10 4s 10 4s 10 4s 2 2 2 2 44+ ) 44+ ) 44+ ) 3d 3d 3d 3d Zn-like (W Zn-like (W Zn-like (W 0 0 0 0 44+ ) Zn-like (W Nothing changes � 3d 10 4s = e capture => 3d 9 4s 2 nl = Auto-ionization => 3d 10 4s 3d 10 4s 2 = Excitation => 3d 9 4s 2 nl = Radiative decay => 3d 10 4s 2 � DR �

  18. Comparison of W 45+ DR via 3d 9 4l 4l’ � 4 � DR Cross sections (10 -24 m 2 ) � E. Behar JQSRT 58 449 (1997) � Present � 2 � 0 � Electron energy (eV) �

  19. Comparison of W 45+ DR via 3p 5 4l 4l’ � DR Cross sections (10 -23 m 2 ) � 3 � E. Behar JQSRT 58 449 (1997) � 2 � Present � 1 � 0 � Electron energy (eV) �

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend