exotic bbn ryan et al
play

Exotic BBN Ryan et al. Possible sources for the discrepancy - PowerPoint PPT Presentation

How to best reconcile Big Bang Nucleosynthesis with Li abundance determinations? Exotic BBN Ryan et al. Possible sources for the discrepancy Nuclear Rates - Restricted by solar neutrino flux Discussed by Coc - Role of resonances


  1. How to best reconcile Big Bang Nucleosynthesis with Li abundance determinations? Exotic BBN

  2. Ryan et al.

  3. Possible sources for the discrepancy • Nuclear Rates - Restricted by solar neutrino flux Discussed by Coc - Role of resonances • Stellar Depletion Discussed by Richard, Korn, Lind • Stellar parameters Discussed by Ryan dLi . 08 dlng = . 09 dLi dT = . 5 100 K

  4. Possible sources for the discrepancy • Stellar Depletion Discussed by Richard, Korn, Lind • Stellar parameters Discussed by Ryan dLi . 08 dlng = . 09 dLi dT = . 5 100 K • Particle Decays

  5. Limits on Unstable particles due to Electromagnetic/Hadronic Production and Destruction of Nuclei 3 free parameters ζ X = n X m X /n γ = m X Y X η , m X , and τ X • Start with non-thermal injection spectrum (Pythia) • Evolve element abundances including thermal (BBN) and non-thermal processes.

  6. E.g., Gravitino decay Cyburt, Ellis, Fields, Luo, Olive, Spanos χ + W − ( H − ) , e G → ˜ e f f, e i γ ( Z ) , e i e χ 0 χ 0 i H 0 G → ˜ G → ˜ G → ˜ G → ˜ g g. plus relevant 3-body decays

  7. D/H 3e-05 7 Li/H 1e-10 10 1 6 Li/ 7 Li 0.1 1e-02 10 2 10 3 10 4 10 5 10 6 τ (sec) Jedamzik Kawasaki, Kohri, Moroi

  8. 0.230 0.240 3 x 10 -4 10 -4 3.0 0.3 3.2 x 10 -5 1.0 3.0 x 10 -9 1.0 x 10 -9 2.75 x 10 -10 0.1 0.05 Based on m 1/2 = 300 GeV, tan β =10 ; B h ~ 0.2

  9. CMSSM M in = M GUT , tan � = 10, µ > 0 M in = M GUT , tan � = 55, µ > 0 3000 3000 3000 3000 m 0 (GeV) m 0 (GeV) 2000 2000 2000 2000 1000 1000 1000 1000 0 0 0 0 100 100 200 200 300 300 400 400 500 500 600 600 700 700 800 800 900 900 1000 1000 100 100 1000 1000 2000 2000 m 1/2 (GeV) m 1/2 (GeV) EOSS

  10. Gravitino Decays and Li m 3/2 = 250 GeV m 3/2 = 250 GeV = 500 GeV = 750 GeV = 500 GeV = 750 GeV = 1000 GeV = 1000 GeV = 5000 GeV = 5000 GeV Cyburt, Ellis, Fields, Luo, Olive, Spanos

  11. 0.230 3 x 10 -4 10 -4 0.240 3.2 x 10 -5 3.0 1.0 2.75 x 10 -10 1.0 x 10 -9 0.1 0.05 co-annihilation strip, tan β =10 ; m 3/2 = 250 GeV

  12. 0.230 1.0 0.240 3 x 10 -4 0.3 10 -4 3.2 x 10 -5 3.0 x 10 -9 1.0 x 10 -9 0.1 0.05 co-annihilation strip, tan β =10 ; m 3/2 = 1000 GeV

  13. 0.230 0.240 3 x 10 -4 10 -4 3.0 3.2 x 10 -5 0.3 1.0 3.0 x 10 -9 1.0 x 10 -9 2.75 x 10 -10 0.1 0.05 Benchmark point C, tan β =10 ; m 1/2 = 400 GeV

  14. Uncertainties There are only a few non-thermal m 3/2 (TeV) 21 ( n 4 He → npt ), rates which affect the result 7 Li/H -8 0.02 p 4 He → np 3 He 20% p 4 He → ddp 40% 0.04 p 4 He → dnpp 40% -9 d He → Li γ 0.04 Log ! 3/2 4 6 t 4 He → 6 Li n 20% n He → dt 0.06 -0.06 3 He 4 He → 6 Li p Log ! 20% -10 n 4 He → npt 20% 0.02 n 4 He → ddn 40% -11 n 4 He → dnnp 40% p 4 He → ppt 20% 6 7 -0.02 n 4 He → nn 3 He -12 20% -13 1 2 3 4 5 m 3/2 (TeV)

  15. How well can you do 2   7 Li � 2 � � 2 D H − 2 . 82 × 10 − 5 H − 1 . 23 × 10 − 10 � Y p − 0 . 256 � χ 2 ≡ s 2 + + + i ,   0 . 011 0 . 27 × 10 − 5 0 . 71 × 10 − 10 i SBBN: χ 2 = 31.7 - field stars Point C -8 SBBN: χ 2 = 21.8 - GC stars* -9 * 6 -10 Log � 3/2 is probably beyond the reach of present-day interferometers. NGC 6397 appears to have a higher Li content than field stars 50 of the same metallicity. This needs to be confirmed by a homo- -11 32 9.2 geneous analysis of field stars, with the same models and meth- ods. This may or may not be related to the fact that this cluster on is nitrogen rich, compared to field stars of the same metallicity -12 - (Pasquini et al. 2008). - -13 * from Gonzales Hernandez et al. 2000 3000 4000 5000 m 3/2 (GeV)

  16. � s 2 D/H ( × 10 − 5 ) 7 Li/H ( × 10 − 10 ) χ 2 m 3 / 2 [GeV] Log 10 ( ζ 3 / 2 / [GeV]) Y p i BBN —— —— 0.2487 2.52 5.12 —— 31.7 C 4380 − 9 . 69 0.2487 3.15 2.53 0.26 5.5 E 4850 − 9 . 27 0.2487 3.20 2.42 0.29 5.5 L 4380 − 9 . 69 0.2487 3.21 2.37 0.26 5.4 M 4860 − 10 . 29 0.2487 3.23 2.51 1.06 7.0 C 4680 − 9 . 39 0.2487 3.06 2.85 0.08 2.0 M 4850 − 10 . 47 0.2487 3.11 2.97 0.09 2.7 C 3900 − 10 . 05 0.2487 3.56 1.81 0.02 2.8 C 4660 − 9 . 27 0.2487 3.20 2.45 0.16 1.1 Point C Point C -8 -8 -9 -9 -10 -10 Log � 3/2 Log � 3/2 50 50 4.6 2.3 32 32 -11 -11 6 4.6 6 9.2 -12 -12 9.2 -13 -13 increased uncertainty in D/H + GC value for Li 2000 3000 4000 5000 2000 3000 4000 5000 m 3/2 (GeV) m 3/2 (GeV)

  17. General feature of “fixing” Li: Increased D/H 4.5x10 -10 4.5x10 -10 Point C 4x10 -10 4x10 -10 Point E 3.5x10 -10 3.5x10 -10 3x10 -10 3x10 -10 7 Li/H 7 Li/H 2.5x10 -10 2.5x10 -10 2x10 -10 2x10 -10 1.5x10 -10 1.5x10 -10 1x10 -10 1x10 -10 5x10 -11 5x10 -11 9x10 -5 0.0001 9x10 -5 0.0001 2x10 -5 3x10 -5 4x10 -5 5x10 -5 6x10 -5 7x10 -5 8x10 -5 2x10 -5 3x10 -5 4x10 -5 5x10 -5 6x10 -5 7x10 -5 8x10 -5 D/H D/H Cyburt, Ellis, Fields, Luo, Olive, Spanos Olive, Petitjean, Vangioni, Silk

  18. Evolution of D, Li With post BBN processing of Li, D/H reproduces upper end of absorption data - dispersion due to in situ chemical destruction Olive, Petitjean, Vangioni, Silk

  19. Effects of Bound States ~ • In SUSY models with a τ NLSP, bound states form ~ between 4 He and τ • The 4 He (D, γ ) 6 Li reaction is normally highly suppressed (production of low energy γ ) • Bound state reaction is not suppressed D γ 6 D Li − 4 6 He 4 X − Li ) ( He X Pospelov

  20. m 3/2 = 100 GeV , tan β = 10 , µ > 0 m 3/2 = 100 GeV , tan β = 10 , µ > 0 2000 2000 2000 2000 7 Li = 4.3 3 He/D = 1 4.3 7 Li = 4.3 m 0 (GeV) m 0 (GeV) 6 Li / 7 Li = 0.15 0.01 6 Li / 7 Li = 0.15 0.01 3 He/D = 1 1000 1000 1000 1000 0.15 4.0 4.0 D = 4.0 2.2 D = 4.0 2.2 0 0 0 0 100 100 1000 1000 2000 2000 3000 3000 4000 4000 5000 5000 100 100 1000 1000 2000 2000 3000 3000 4000 4000 5000 5000 m 1/2 (GeV) m 1/2 (GeV) Cyburt, Ellis, Fields, KO, Spanos

  21. m 3/2 = 0.2m 0 , tan β = 10 , µ > 0 m 3/2 = 0.2m 0 , tan β = 10 , µ > 0 2000 2000 2000 2000 3 He/D = 1 3 He/D = 1 7 Li = 4.3 7 Li = 4.3 6 Li / 7 Li = 0.15 m 0 (GeV) m 0 (GeV) 0.01 1000 1000 1000 1000 6 Li / 7 Li = 0.15 0.01 D = 4.0 D = 4.0 0 0 0 0 1 100 100 1000 1000 2000 2000 3000 3000 4000 4000 5000 5000 100 100 1000 1000 2000 2000 3000 3000 4000 4000 5000 5000 m 1/2 (GeV) m 1/2 (GeV) Cyburt, Ellis, Fields, KO, Spanos

  22. A 6 Li Plateau? Observers may not see one, but theorist do predict one! Thomas et al. BBN: 6 Li/H ~ 10 -14 Vangioni et al. Dark Matter: Jedamzik tan � = 10 tan � = 10 (focus point) tan � = 55 10 -12 tan � = 55 (focus point) 6 Li/H abundance 10 -13 Ellis et al. BBN 10 -14 100 1000 m 1/2 [GeV]

  23. Axion Condensation • Axion dark matter forms a Bose-Einstein condensate through gravitational self-interactions. Interactions between cold axion fluid cool photon gas: � 3 / 4 � 2 η 10 , BBN = η 10 , WMAP = 4 . 57 ± 0 . 11 3 ⇒ Li/H ~ 2 x 10 -10 but D/H ~ 4.5 x 10 -5 Erken, Sikivie, Tam, Yang

  24. Possible sources for the discrepancy • Stellar parameters dLi . 08 dlng = . 09 dLi Discussed by Ryan dT = . 5 100 K • Particle Decays • Variable Constants

  25. How could varying α a ff ect BBN? F T 5 ∼ Γ ( T f ) ∼ H ( T f ) ∼ √ G N NT 2 G 2 f Recall in equilibrium, n p ∼ e − ∆ m/T fixed at freezeout Helium abundance, 2( n/p ) Y ∼ 1+( n/p ) If T f is higher, ( n/p ) is higher, and Y is higher

  26. Limits on α from BBN Contributions to Y come from n/p which in turn come from Δ mN Contributions to ∆ m N : Kolb, Perry, & Walker Campbell & Olive ∆ m N ∼ a α em Λ QCD + bv Bergstrom, Iguri, & Rubinstein Changes in α , Λ QCD , and/or v all induce changes in ∆ m N and hence Y Y � ∆ 2 m N ∆ Y ∆ m N ∼ ∆ α α < 0 . 05 If ∆ α arises in a more complete theory the e ff ect may be greatly enhanced: ∆ Y Y � O (100) ∆ α α and ∆ α α < few × 10 − 4

  27. Coupled Variations : Campbell and Olive Langacker, Segre, and Strassler Dent and Fairbairn Calmet and Fritzsch Recall, Damour, Piazza, and Veneziano UV ) ≡ g 2 s ( M 2 UV ) 4 π α s ( M 2 = b 3 ln( M 2 UV / Λ 2 ) 4 π � 2 / 27 � m c m b m t � � 2 π Λ = µ exp − µ 3 9 α s ( µ ) � � α + 2 3 ∆ v v + ∆ h c + ∆ h b + ∆ h t ∆Λ = R ∆ α 27 h c h b h t Λ ( R ~ 30, but very model dependent Dine et al.

  28. Fermion Masses: G F ∝ 1 /v 2 m f ∝ h f v Also expect variations in Yukawas, ∆ α U ∆ h h = 1 2 α U But in theories with radiative electroweak symmetry breaking v ∼ M P exp( − 2 π c/ α t ) Thus small changes in h t will induce large changes in v ∆ v = S ∆ α v ∼ 80 ∆ α U ∆ v v α U α

  29. Approach: Consider possible variation of Yukawa, h, or fine-structure constant, α Include dependence of Λ on α ; of v on h, etc. Consider effects on: Q = Δ m N, τ N, B D and with ∆ h ∆ α U h = 1 2 α U ∆ B D = − [6 . 5(1 + S ) − 18 R ] ∆ α B D α ∆ Q = (0 . 1 + 0 . 7 S − 0 . 6 R ) ∆ α Q α ∆ τ n = − [0 . 2 + 2 S − 3 . 8 R ] ∆ α α , τ n Coc, Nunes, Olive, Uzan, Vangioni Dmitriev & Flambaum

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend