exclusion processes and quantum phase transitions in xxz
play

Exclusion processes and quantum phase transitions in XXZ spin - PowerPoint PPT Presentation

Exclusion processes and quantum phase transitions in XXZ spin chains. 18/12/2014 SSEP and QPT in XXZ spin chains Vivien Lecomte (LPMA Paris VI-VII) London 1 / 29 Marc Cheneau 1 Juan P. Garrahan 2 , Frdric van Wijland 3 Ccile


  1. Exclusion processes and quantum phase transitions in XXZ spin chains. 18/12/2014 SSEP and QPT in XXZ spin chains Vivien Lecomte (LPMA – Paris VI-VII) – London 1 / 29 Marc Cheneau 1 Juan P. Garrahan 2 , Frédéric van Wijland 3 Cécile Appert-Rolland 4 , Bernard Derrida 5 , Alberto Imparato 6 1 Institut d’Optique, Palaiseau 2 Nottingham University 3 MSC, Paris 4 LPT, Orsay 5 LPS, ENS, Paris 6 Aarhus University 18 th December 2014

  2. Introduction Perspectives opened ; questions raised 18/12/2014 SSEP and QPT in XXZ spin chains Vivien Lecomte (LPMA – Paris VI-VII) (I will ask questions to you .) import/export techniques from/to stat. mech. large/small scale spectrum fjnite-size efgects 2 / 29 Motivations Use: dictionnary between (Well known at least in the stat. mech. community.) Correspondence Classical and quantum systems · evolution operator for stochastic classical system [particles hopping] · Hamiltonian of quantum XXZ chain · regimes of large deviations of dynamical observables · phases across a Quantum Phase Transition

  3. Introduction Motivations 18/12/2014 SSEP and QPT in XXZ spin chains Vivien Lecomte (LPMA – Paris VI-VII) (I will ask questions to you .) Perspectives opened ; questions raised 2 / 29 Use: dictionnary between (Well known at least in the stat. mech. community.) Correspondence Classical and quantum systems · evolution operator for stochastic classical system [particles hopping] · Hamiltonian of quantum XXZ chain · regimes of large deviations of dynamical observables · phases across a Quantum Phase Transition · fjnite-size efgects · large/small scale spectrum · import/export techniques from/to stat. mech.

  4. Exclusion Process b 18/12/2014 SSEP and QPT in XXZ spin chains Vivien Lecomte (LPMA – Paris VI-VII) umps umps Large deviation function of time-integrated observables A i System b b 3 / 29 b b Exclusion Processes – generic settings b b b b b b maximal occupation N 1 1 1 1 1 1 α β ρ 0 ρ 1 L 1 γ δ Confjgurations: occupation numbers { n i } Exclusion rule: 0 ≤ n i ≤ N Markov evolution for the probability P ( { n i } , t ) ∑ [ ] W ( n ′ i → n i ) P ( { n ′ i } , t ) − W ( n i → n ′ ∂ t P ( { n i } , t ) = i ) P ( { n i } , t ) n ′ ⟨ e − sA ⟩ ∼ e t ψ ( s ) ( ⇔ determining P ( A , t ) ) = # j − − → umps − j ← − − A = total current Q on time window [0 , t ] = # j − − → umps + j ← − − A = total activity K on time window [0 , t ]

  5. Exclusion Process b 18/12/2014 SSEP and QPT in XXZ spin chains Vivien Lecomte (LPMA – Paris VI-VII) umps umps Large deviation function of time-integrated observables A i System b b 3 / 29 b b Exclusion Processes – generic settings b b b b b b maximal occupation N 1 1 1 1 1 1 α β ρ 0 ρ 1 L 1 γ δ Confjgurations: occupation numbers { n i } Exclusion rule: 0 ≤ n i ≤ N Markov evolution for the probability P ( { n i } , t ) ∑ [ ] W ( n ′ i → n i ) P ( { n ′ i } , t ) − W ( n i → n ′ ∂ t P ( { n i } , t ) = i ) P ( { n i } , t ) n ′ ⟨ e − sA ⟩ ∼ e t ψ ( s ) ( ⇔ determining P ( A , t ) ) = # j − − → umps − j ← − − A = total current Q on time window [0 , t ] = # j − − → umps + j ← − − A = total activity K on time window [0 , t ]

  6. Exclusion Process b 18/12/2014 SSEP and QPT in XXZ spin chains Vivien Lecomte (LPMA – Paris VI-VII) umps umps Large deviation function of time-integrated observables A i System b b 3 / 29 b b Exclusion Processes – generic settings b b b b b b maximal occupation N 1 1 1 1 1 1 α β ρ 0 ρ 1 L 1 γ δ Confjgurations: occupation numbers { n i } Exclusion rule: 0 ≤ n i ≤ N Markov evolution for the probability P ( { n i } , t ) ∑ [ ] W ( n ′ i → n i ) P ( { n ′ i } , t ) − W ( n i → n ′ ∂ t P ( { n i } , t ) = i ) P ( { n i } , t ) n ′ ⟨ e − sA ⟩ ∼ e t ψ ( s ) ( ⇔ determining P ( A , t ) ) = # j − − → umps − j ← − − A = total current Q on time window [0 , t ] = # j − − → umps + j ← − − A = total activity K on time window [0 , t ]

  7. Exclusion Process b 18/12/2014 SSEP and QPT in XXZ spin chains Vivien Lecomte (LPMA – Paris VI-VII) XXX spin chain Hamiltonian (up to boundary terms and constants). n L System instead of the wave function but eq. for the probability similar to Schrödinger eq. Evolution of probability vector P : b 4 / 29 b b b b [Schütz & Sandow PRE 49 2726] Operator representation b b b b b maximal occupation N 1 1 1 1 1 1 α β ρ 0 ρ 1 L 1 γ δ ∂ t P = W P ∑ [ ] σ + k σ − k +1 + σ − k σ + W = k +1 − ˆ n k (1 − ˆ n k +1 ) − ˆ n k +1 (1 − ˆ n k ) 1 ≤ k ≤ L − 1 [ ] [ ] σ + σ − + α 1 − (1 − ˆ n 1 ) + γ 1 − ˆ n 1 [ ] [ ] σ + σ − + δ L − (1 − ˆ n L ) + β L − ˆ σ ± = σ x ± i σ − and σ z = ˆ n − N 2 are spin operators (with j = N 2 )

  8. Exclusion Process b 18/12/2014 SSEP and QPT in XXZ spin chains Vivien Lecomte (LPMA – Paris VI-VII) XXZ spin chain Hamiltonian n L Large deviations with b b 5 / 29 b b b b Operator representation for large deviations b b b b maximal occupation N 1 1 1 1 1 1 α β ρ 0 ρ 1 L 1 γ δ ⟨ e − sK ⟩ ∼ e t ψ ( s ) ψ ( s ) = max Sp W s ∑ [ ] e − s σ + k σ − k +1 + e − s σ − k σ + k +1 − ˆ n k (1 − ˆ n k +1 ) − ˆ n k +1 (1 − ˆ W s = n k ) 1 ≤ k ≤ L − 1 [ ] [ ] e − s σ + e − s σ − 1 − (1 − ˆ 1 − ˆ + α n 1 ) + γ n 1 [ ] [ ] e − s σ + e − s σ − + δ L − (1 − ˆ n L ) + β L − ˆ

  9. Exclusion Process Periodic Boundary Conditions Vivien Lecomte (LPMA – Paris VI-VII) SSEP and QPT in XXZ spin chains 18/12/2014 6 / 29 Example 1 : exclusion process on a ring

  10. Exclusion Process Periodic Boundary Conditions Focus on a simple situation Periodic boundary conditions Vivien Lecomte (LPMA – Paris VI-VII) SSEP and QPT in XXZ spin chains 18/12/2014 7 / 29 Simple exclusion process (SSEP): maximal occupation N = 1 density: ρ 0 = N 0 / L Fixed total particle number N 0 1 1 1 1 1

  11. Exclusion Process Periodic Boundary Conditions 18/12/2014 SSEP and QPT in XXZ spin chains Vivien Lecomte (LPMA – Paris VI-VII) Ring geometry 7 / 29 Periodic boundary conditions Focus on a simple situation Simple exclusion process (SSEP): maximal occupation N = 1 density: ρ 0 = N 0 / L Fixed total particle number N 0 1 1 1 1 1 . . . 2 1 L ≡ 0 . . .

  12. Exclusion Process Periodic Boundary Conditions 18/12/2014 SSEP and QPT in XXZ spin chains Vivien Lecomte (LPMA – Paris VI-VII) with 7 / 29 Focus on a simple situation Periodic boundary conditions Simple exclusion process (SSEP): maximal occupation N = 1 density: ρ 0 = N 0 / L Fixed total particle number N 0 1 1 1 1 1 L − 1 [ ] ∑ e − s ( ) σ + k σ − k +1 + σ − k σ + W s = − ˆ n k (1 − ˆ n k +1 ) − (1 − ˆ n k )ˆ n k +1 k +1 k =1 − e − s = L − 1 2 H ∆ 2 L − 1 ∑ [ ] H ∆ = − σ x k σ x k +1 + σ y k σ y k +1 + ∆ σ z k σ z ∆ = e s k +1 k =1

  13. Exclusion Process Periodic Boundary Conditions 18/12/2014 SSEP and QPT in XXZ spin chains Vivien Lecomte (LPMA – Paris VI-VII) 8 / 29 SSEP Quantum Spin Chain Classical/Quantum dictionnary local occupation number n k ( 1 ≤ k ≤ L ) local spin σ z k ( 1 ≤ k ≤ L ) n k = 0 , 1 ≡ ◦ , • σ z k = 1 , − 1 ≡ ↑ , ↓ (fjxed) total occupation N 0 ≡ ρ 0 L (fjxed) total magnetization M ≡ m 0 L (mesoscopic) density ρ ( x ) ( 0 ≤ x ≤ 1 ) (mesoscopic) magnet. m ( x ) ( 0 ≤ x ≤ 1 )

  14. Exclusion Process evolution operator 18/12/2014 SSEP and QPT in XXZ spin chains Vivien Lecomte (LPMA – Paris VI-VII) ground state energy cumulant generating function Periodic Boundary Conditions J xy 9 / 29 Quantum Spin Chain SSEP Classical/Quantum dictionnary local occupation number n k ( 1 ≤ k ≤ L ) local spin σ z k ( 1 ≤ k ≤ L ) n k = 0 , 1 ≡ ◦ , • σ z k = 1 , − 1 ≡ ↑ , ↓ (fjxed) total occupation N 0 ≡ ρ 0 L (fjxed) total magnetization M ≡ m 0 L (mesoscopic) density ρ ( x ) ( 0 ≤ x ≤ 1 ) (mesoscopic) magnet. m ( x ) ( 0 ≤ x ≤ 1 ) ferromagnetic XXZ Hamiltonian ( J xy = − 1 ) L − 1 W s = L − 1 − e − s [ ] ∑ ( ) 2 H ∆ H ∆ = σ x k σ x k +1 + σ y k σ y + J z σ z k σ z k +1 k +1 2 k =1 L − 1 [ ] ∑ = − σ x k σ x k +1 + σ y k σ y k +1 + ∆ σ z k σ z k +1 k =1 counting factor ∆ = e s of the activity K anisotropy ∆ = − J z along direction Z ψ ( s ) = max Sp W s = L − 1 − e − s 2 E L ( s ) E L ( s ) = min Sp H ∆ 2

  15. Exclusion Process Microscopic solution Bethe Ansatz [Appert, Derrida, VL, van Wijland, PRE 78 021122] Vivien Lecomte (LPMA – Paris VI-VII) SSEP and QPT in XXZ spin chains 18/12/2014 10 / 29

  16. Exclusion Process eigenvalue 18/12/2014 SSEP and QPT in XXZ spin chains Vivien Lecomte (LPMA – Paris VI-VII) Bethe equations Microscopic solution 10 / 29 eigenvector of components Coordinate Bethe Ansatz: Bethe Ansatz [Appert, Derrida, VL, van Wijland, PRE 78 021122] Integrability known from long ; diffjculty: L → ∞ N 0 ∑ ∏ [ ] x i A ( P ) ζ P ( i ) P i =1 [ 1 ] + . . . + 1 ψ ( s ) = − 2 N 0 + e − s [ ] − e − s ζ 1 + . . . + ζ N 0 ζ 1 ζ N 0 [ ] N 0 − 1 − 2 e s ζ i + ζ i ζ j ∏ ζ L i = 1 − 2 e s ζ j + ζ i ζ j j =1 j ̸ = i

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend