exact results for quenched disorder at criticality
play

Exact results for quenched disorder at criticality Gesualdo Delfino - PowerPoint PPT Presentation

Quantissima in the Serenissima III Venice, 19-23 August 2019 Exact results for quenched disorder at criticality Gesualdo Delfino SISSA Trieste Based on: G. Delfino, Phys. Rev. Lett. 118 (2017) 250601 G. Delfino and E. Tartaglia, Phys.


  1. Quantissima in the Serenissima III Venice, 19-23 August 2019 Exact results for quenched disorder at criticality Gesualdo Delfino SISSA – Trieste

  2. Based on: G. Delfino, Phys. Rev. Lett. 118 (2017) 250601 G. Delfino and E. Tartaglia, Phys. Rev. E 96 (2017) 042137; J. Stat. Mech. (2017) 123303 G. Delfino and N. Lamsen, JHEP 04 (2018) 077; J. Stat. Mech. (2019) 024001

  3. Introduction quenched disorder: some degrees of freedom take too long to reach thermal equilibrium and can be considered as random variables disorder average is taken on the free energy F ( { J } ) � F = P ( { J } ) F ( { J } ) { J } with a probability distribution P ( { J } ) examples: impurities in magnets, spin glasses, ... numerics/experiments: exists “random” criticality with new critical exponents

  4. theory (short range interactions): • perturbative results for exponents in very few cases for weak disorder only numerics for strong disorder • surprising absence of exact results in 2D (pure systems solved in ’80s) moreover in 2D bond disorder softens 1st order transitions [Aizen- man, Wehr ’89; Hui, Berker ’89] , normally in favor of 2nd order ones, making more room for conformal invariance

  5. theory (short range interactions): • perturbative results for exponents in very few cases for weak disorder only numerics for strong disorder • surprising absence of exact results in 2D (pure systems solved in ’80s) moreover in 2D bond disorder softens 1st order transitions [Aizen- man, Wehr ’89; Hui, Berker ’89] , normally in favor of 2nd order ones, making more room for conformal invariance questions: • does quenched disorder generally fall within the field theoretical framework? • do random critical points possess conformal invariance? • if so, why the corresponding conformal field theories in 2D have never been found?

  6. theory (short range interactions): • perturbative results for exponents in very few cases for weak disorder only numerics for strong disorder • surprising absence of exact results in 2D (pure systems solved in ’80s) moreover in 2D bond disorder softens 1st order transitions [Aizen- man, Wehr ’89; Hui, Berker ’89] , normally in favor of 2nd order ones, making more room for conformal invariance questions: • does quenched disorder generally fall within the field theoretical framework? • do random critical points possess conformal invariance? • if so, why the corresponding conformal field theories in 2D have never been found? historically, the Potts model received a special attention

  7. 2D random bond Potts model: disorder � H = − J ij δ s i ,s j s i = 1 , 2 , . . . , q � i,j � 0 2 q 4 • permutational invariance S q ; exists continuation to q real • transition of pure ferromagnet ( J ij = J > 0) 2nd order up to q = 4, 1st order after • bond disorder yields 2nd order transition extending to q = ∞ [Aizenman, Wehr ’89; Hui, Berker ’89] • perturbative random critical point for q → 2 [Ludwig ’90, Dotsenko et al ’95] • numerical hints of q -independent exponents [Chen et al ’92,’95; Domany, Wiseman ’95; Kardar et al ’95] . Superuniversality? • q -dependent exponents (weakly for ν ) [Cardy, Jacobsen ’97 (nu- merical transfer matrix)]

  8. Random criticality from scale invariant scattering [GD ’17] • Euclidean field theory in 2D ← → relativistic quantum field the- ory in (1+1)D − → particles • at criticality ∞ -dimensional conformal symmetry makes scat- tering completely elastic p p 2 1 t p p x 1 2 • center of mass energy only relativistic invariant, dimensionful ⇒ constant amplitudes by scale invariance

  9. O(N) model [GD,Lamsen ’18,’19] � H = − s i = ( s i, 1 , s i, 2 , . . . , s i,N ) J ij s i · s j , � i,j �

  10. O(N) model [GD,Lamsen ’18,’19] � H = − s i = ( s i, 1 , s i, 2 , . . . , s i,N ) J ij s i · s j , � i,j � pure case: J ij = J particles: a = 1 , . . . , N scattering amplitudes: S 1 S 2 S 3

  11. O(N) model [GD,Lamsen ’18,’19] � H = − J ij s i · s j , s i = ( s i, 1 , s i, 2 , . . . , s i,N ) � i,j � pure case: J ij = J particles: a = 1 , . . . , N scattering amplitudes: S 1 S 2 S 3 S 1 = S ∗ 3 ≡ ρ 1 e iφ S 2 = S ∗ crossing symmetry: 2 ≡ ρ 2 unitarity: ρ 2 1 + ρ 2 2 = 1 ρ 1 ρ 2 cos φ = 0 Nρ 2 1 + 2 ρ 1 ρ 2 cos φ + 2 ρ 2 1 cos 2 φ = 0 solutions are O ( N )-invariant RG fixed points

  12. Solution cos φ N ρ 1 ρ 2 solutions: P 1 ± ( −∞ , ∞ ) 0 ± 1 - √ 2 − N ± 1 P 2 ± [ − 2 , 2] 1 0 2 � 1 − ρ 2 P 3 ± 2 [0 , 1] ± 0 1 P1 ± : free bosons/fermions P2 ± : dense/dilute self-avoiding loops P3 + : BKT phase

  13. Solution N ρ 1 ρ 2 cos φ solutions: P 1 ± ( −∞ , ∞ ) 0 ± 1 - √ 2 − N ± 1 P 2 ± [ − 2 , 2] 1 0 2 � 1 − ρ 2 P 3 ± 2 [0 , 1] 0 ± 1 P1 ± : free bosons/fermions P2 ± : dense/dilute self-avoiding loops P3 + : BKT phase conformal data: Solution ∆ η ∆ ε ∆ s N c N 1 1 1 P 1 − ( −∞ , ∞ ) 2 2 2 16 P 1 + ( −∞ , ∞ ) N − 1 0 1 0 6 2 cos π P 2 − 1 − ∆ 2 , 1 ∆ 1 , 3 ∆ 1 2 , 0 p p ( p +1) ∆ m,n = [( p +1) m − pn ] 2 − 1 π 6 P 2 + 2 cos 1 − ∆ 1 , 2 ∆ 3 , 1 ∆ 0 , 1 4 p ( p +1) p +1 p ( p +1) 2 1 1 b 2 P 3 ± 2 1 4 b 2 16 b 2 NS 1 + S 2 + S 3 = e − 2 iπ ∆ η

  14. energy-independent amplitudes are related to statistics right/left moving particles are created by chiral fields with spin s R/L = ± ∆ η . . . . = . . . . S = e − iπ ( s R − s L ) = e − 2 iπ ∆ η bosons/fermions for ∆ η =integer/half-integer; generalized statis- tics otherwhise

  15. disordered case: Z n − 1 replica method: F = − ln Z = − lim n n → 0 n replicas coupled by average over disorder

  16. disordered case: Z n − 1 replica method: F = − ln Z = − lim n n → 0 n replicas coupled by average over disorder particles: a i a = 1 , . . . , N i = 1 , . . . , n amplitudes: b j b i a i a i b i b j a i a i b i b i b j b j a i a i a i b i a i b i a i a i a i b j a i b j S 1 S 2 S 3 S 4 S 5 S 6

  17. disordered case: Z n − 1 F = − ln Z = − lim replica method: n n → 0 n replicas coupled by average over disorder particles: a i a = 1 , . . . , N i = 1 , . . . , n amplitudes: b j b i a i a i b i b j a i a i b i b i b j b j a i a i a i b i a i b i a i a i a i b j a i b j S 1 S 2 S 3 S 4 S 5 S 6 S 1 = S ∗ 3 ≡ ρ 1 e iφ S 2 = S ∗ crossing symmetry: 2 ≡ ρ 2 S 4 = S ∗ 6 ≡ ρ 4 e iθ S 5 = S ∗ 5 ≡ ρ 5 ρ 2 1 + ρ 2 2 = 1 ρ 1 ρ 2 cos φ = 0 unitarity: ρ 2 4 + ρ 2 5 = 1 ρ 4 ρ 5 cos θ = 0 Nρ 2 1 + N ( n − 1) ρ 2 4 + 2 ρ 1 ρ 2 cos φ + 2 ρ 2 1 cos 2 φ = 0 2 Nρ 1 ρ 4 cos( φ − θ )+ N ( n − 2) ρ 2 4 +2 ρ 2 ρ 4 cos θ +2 ρ 1 ρ 4 cos( φ + θ ) = 0

  18. solutions with n = 0 extending to positive N : Solution N ρ 2 cos φ ρ 4 cos θ P 1 ± ( −∞ , ∞ ) ± 1 - 0 - √ 2 − N ± 1 P 2 ± [ − 2 , 2] 0 0 - 2 � 1 − ρ 2 P 3 ± 2 0 0 - ± 1 � √ 1 N − 1 N + 2 V 1 ± [ 2 − 1 , ∞ ) 0 ± 0 N + 1 N + 1 N ± 1 ± N 2 +2 N − 1 S 1 ± ( −∞ , ∞ ) 0 1 √ √ 2 2( N 2 +1) ± 1 ± 1 S 2 ± ( −∞ , ∞ ) 0 1 √ √ 2 2 ρ 4 = 0 yields decoupled replicas (pure case) − → ρ 4 ∼ disorder strength

  19. S2 − S1 − V1 − disorder P2 P1 − + 0 N* 1 2 3 N • V 1 perturbatively accessible for N → 1 − √ • N ∗ = 2 − 1 = 0 . 414 .. (cfr numerical estimate N ∗ ≈ 0 . 5 of [Shimada,Jacobsen,Kamiya ’14]) • S1 − : Nishimori-like multicritical line • S2 − : zero temperature line • disordered polymers ( N = 0) renormalize on S2 −

  20. Potts model [GD ’17; GD,Tartaglia ’17] � H = − J ij s i s j , s i = 1 , 2 , . . . , q � i,j � pure case: J ij = J particles: α | β α, β = 1 , . . . , q , α � = β δ γ δ γ amplitudes: α β α β α α α α γ γ γ γ S 0 S 1 S 2 S 3 S 0 = S ∗ S 1 = S ∗ 2 ≡ ρ e iϕ , S 3 = S ∗ crossing: 0 ≡ ρ 0 , 3 ≡ ρ 3 3 + ( q − 2) ρ 2 = 1 ρ 2 unitarity: 2 ρρ 3 cos ϕ + ( q − 3) ρ 2 = 0 ρ 2 + ( q − 3) ρ 2 0 = 1 2 ρ 0 ρ cos ϕ + ( q − 4) ρ 2 0 = 0

  21. solutions: Solution Range ρ 0 ρ 2 cos ϕ ρ 3 I q = 3 0, 2 cos ϕ 1 [ − 2 , 2] 0 ±√ 3 − q ±√ 3 − q II ± q ∈ [ − 1 , 3] 0 1 √ 4 − q ±√ 4 − q III ± q ∈ [0 , 4] ± 1 ± (3 − q ) √ � � � q − 3 q − 4 q − 3 q ∈ [ 1 � IV ± 2 (7 − 17) , 3] ± ± (3 − q )(4 − q ) ± q 2 − 5 q +5 q 2 − 5 q +5 q 2 − 5 q +5 √ � � � q ∈ [4 , 1 q − 3 q − 4 q − 3 � V ± 2 (7 + 17)] ± ∓ (3 − q )(4 − q ) ± q 2 − 5 q +5 q 2 − 5 q +5 q 2 − 5 q +5 • solution III ending at q = 4: ferromagnet √ • solutions up to q max = 1 2 (7 + 17) = 5 . 56 .. (larger than previously expected value 4) • room for 2nd order transition in q=5 antiferromagnet (numerical candidate in [Deng et al ’11]) • lattice realization of solution I: q = 3 antiferromagnet on self-dual quad- rangulations [Lv et al ’18]

  22. √ q Solution Potts c ∆ ε ∆ η ∆ σ III sin ϕ< 0 6 π 2 cos F critical 1 − ∆ 2 , 1 ∆ 1 , 3 ∆ 1 2 , 0 − ( p +1) p ( p +1) III sin ϕ> 0 2 cos π 6 F tricritical 1 − ∆ 1 , 2 ∆ 3 , 1 ∆ 0 , 1 − p p ( p +1) 2 III sin ϕ< 0 2( N − 1) π N − 1 2 N 2 cos AF square − ( N +2) N +2 N N +2 8( N +2) S 3 + ( q − 2) S 2 = e − 2 iπ ∆ η

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend