euler mahonian statistics via polyhedral geometry
play

EulerMahonian Statistics Via Polyhedral Geometry [ n ] q ! n ! - PowerPoint PPT Presentation

EulerMahonian Statistics Via Polyhedral Geometry [ n ] q ! n ! Matthias Beck San Francisco State University Benjamin Braun University of Kentucky arXiv:1109.3353 Adv. Math. (2013) Permutation Statistics S n permutation of { 1 ,


  1. Euler–Mahonian Statistics Via Polyhedral Geometry [ n ] q ! n ! Matthias Beck San Francisco State University Benjamin Braun University of Kentucky arXiv:1109.3353 Adv. Math. (2013)

  2. Permutation Statistics π ∈ S n — permutation of { 1 , 2 , . . . , n } Goal: study certain statistics of S n (and other reflection groups), e.g., � � Des( π ) := j : π ( j ) > π ( j + 1) des( π ) := # Des( π ) � maj( π ) := j j ∈ Des( π ) � � inv( π ) := # ( j, k ) : j < k and π ( j ) > π ( k ) Example S 3 = { [123] , [213] , [132] , [312] , [132] , [321] } t des( π ) = 1 + 4 t + t 2 � π ∈ S 3 Euler–Mahonian Statistics Via Polyhedral Geometry Matthias Beck 2

  3. Permutation Statistics π ∈ S n — permutation of { 1 , 2 , . . . , n } Goal: study certain statistics of S n (and other reflection groups), e.g., � � Des( π ) := j : π ( j ) > π ( j + 1) des( π ) := # Des( π ) � maj( π ) := j j ∈ Des( π ) � � inv( π ) := # ( j, k ) : j < k and π ( j ) > π ( k ) More generally, for a Coxeter group W with generators s 1 , s 2 , . . . , s n − 1 , the (right) descent set of σ ∈ W is Des( σ ) := { j : l ( σs j ) < l ( σ ) } Euler–Mahonian Statistics Via Polyhedral Geometry Matthias Beck 2

  4. Permutation Statistics π ∈ S n — permutation of { 1 , 2 , . . . , n } Goal: study certain statistics of S n (and other reflection groups), e.g., � � Des( π ) := j : π ( j ) > π ( j + 1) des( π ) := # Des( π ) � maj( π ) := j j ∈ Des( π ) � � inv( π ) := # ( j, k ) : j < k and π ( j ) > π ( k ) π ∈ S n t des( π ) � ( k + 1) n t k = � Sample Theorem 1 [Euler] (1 − t ) n +1 k ≥ 0 t inv( π ) = � � t maj( π ) Sample Theorem 2 [MacMahon] π ∈ S n π ∈ S n Euler–Mahonian Statistics Via Polyhedral Geometry Matthias Beck 2

  5. Permutation Statistics [Euler] [MacMahon] π ∈ S n t des( π ) � ( k +1) n t k = t inv( π ) = � � � t maj( π ) (1 − t ) n +1 k ≥ 0 π ∈ S n π ∈ S n Goal: new identities of this kind π ∈ S n t des( π ) q maj( π ) � q t k = � [ k +1] n Sample Theorem 3 [MacMahon] � n j =0 (1 − tq j ) k ≥ 0 Sample Theorem 4 [Brenti, Steingr´ ımsson] ( π,ǫ ) ∈ B n t des( π,ǫ ) � (2 k + 1) n t k = � (1 − t ) n +1 k ≥ 0 ( π, ǫ ) — signed permutation with π ∈ S n and ǫ ∈ {± 1 } Euler–Mahonian Statistics Via Polyhedral Geometry Matthias Beck 3

  6. Permutation Statistics [Euler] [MacMahon] π ∈ S n t des( π ) � ( k +1) n t k = t inv( π ) = � � � t maj( π ) (1 − t ) n +1 k ≥ 0 π ∈ S n π ∈ S n Goal: new identities of this kind π ∈ S n t des( π ) q maj( π ) � q t k = � [ k +1] n Sample Theorem 3 [MacMahon] � n j =0 (1 − tq j ) k ≥ 0 Sample Theorem 5 [Chow–Gessel] ( π,ǫ ) ∈ B n s neg( ǫ ) t des( π,ǫ ) q maj( π,ǫ ) � ([ k + 1] q + s [ k ] q ) n t k = � � n j =0 (1 − tq j ) k ≥ 0 ( π, ǫ ) — signed permutation with π ∈ S n and ǫ ∈ {± 1 } Euler–Mahonian Statistics Via Polyhedral Geometry Matthias Beck 3

  7. Permutation Statistics [Euler] [MacMahon] π ∈ S n t des( π ) � ( k +1) n t k = t inv( π ) = � � � t maj( π ) (1 − t ) n +1 k ≥ 0 π ∈ S n π ∈ S n Goal: new identities of this kind bijective proofs (integer partitions) ◮ Coxeter groups (invariant theory) ◮ symmetric & quasisymmetric functions ◮ polyhedral geometry ◮ Euler–Mahonian Statistics Via Polyhedral Geometry Matthias Beck 3

  8. Enter Geometry [Euler] [MacMahon] π ∈ S n t des( π ) π ∈ S n t des( π ) q maj( π ) � � ( k + 1) n t k = q t k = � � [ k + 1] n � n (1 − t ) n +1 j =0 (1 − tq j ) k ≥ 0 k ≥ 0 # ( k [0 , 1] n ∩ Z n ) = ( k + 1) n is the Ehrhart polynomial of the unit n -cube Use braid arrangement { x j = x k : 1 ≤ j < k ≤ n } triangulation of [0 , 1] n : � � [0 , 1] n = x ∈ R n : 0 ≤ x π ( n ) ≤ x π ( n − 1) ≤ · · · ≤ x π (1) ≤ 1 � π ∈ S n Euler–Mahonian Statistics Via Polyhedral Geometry Matthias Beck 4

  9. Enter Geometry [Euler] [MacMahon] π ∈ S n t des( π ) π ∈ S n t des( π ) q maj( π ) � � ( k + 1) n t k = q t k = � � [ k + 1] n � n (1 − t ) n +1 j =0 (1 − tq j ) k ≥ 0 k ≥ 0 # ( k [0 , 1] n ∩ Z n ) = ( k + 1) n is the Ehrhart polynomial of the unit n -cube Use braid arrangement { x j = x k : 1 ≤ j < k ≤ n } triangulation of [0 , 1] n : � � x ∈ R n : 0 ≤ x π ( n ) ≤ x π ( n − 1) ≤ · · · ≤ x π (1) ≤ 1 , [0 , 1] n = � x π ( j +1) < x π ( j ) if j ∈ Des( π ) π ∈ S n Euler–Mahonian Statistics Via Polyhedral Geometry Matthias Beck 4

  10. Enter Geometry [Euler] [MacMahon] π ∈ S n t des( π ) π ∈ S n t des( π ) q maj( π ) � � ( k + 1) n t k = q t k = � � [ k + 1] n � n (1 − t ) n +1 j =0 (1 − tq j ) k ≥ 0 k ≥ 0 # ( k [0 , 1] n ∩ Z n ) = ( k + 1) n is the Ehrhart polynomial of the unit n -cube � � x ∈ R n : 0 ≤ x π ( n ) ≤ x π ( n − 1) ≤ · · · ≤ x π (1) ≤ 1 , [0 , 1] n = � x π ( j +1) < x π ( j ) if j ∈ Des( π ) π ∈ S n Each simplex on the right is unimodular with Ehrhart series t #[ strict inequalities ] (1 − t ) n +1 t des( π ) ( k + 1) n t k = � � = ⇒ (1 − t ) n +1 k ≥ 0 π ∈ S n Euler–Mahonian Statistics Via Polyhedral Geometry Matthias Beck 4

  11. More Geometry [Euler] [MacMahon] π ∈ S n t des( π ) π ∈ S n t des( π ) q maj( π ) � � ( k + 1) n t k = q t k = � � [ k + 1] n � n (1 − t ) n +1 j =0 (1 − tq j ) k ≥ 0 k ≥ 0 � � x ∈ R n : 0 ≤ x π ( n ) ≤ x π ( n − 1) ≤ · · · ≤ x π (1) ≤ 1 , [0 , 1] n = � x π ( j +1) < x π ( j ) if j ∈ Des( π ) π ∈ S n For P ⊂ R n consider σ cone( P ) ( z 0 , z 1 , . . . , z n ) := � z m 0 0 z m 1 · · · z m n 1 n m ∈ cone( P ) ∩ Z n +1 n � � 1 + z j + z 2 j + · · · + z k z k � � σ cone([0 , 1] n ) ( z 0 , z 1 , . . . , z n ) = 0 j j =1 k ≥ 0 n � � [ k + 1] z j z k = 0 k ≥ 0 j =1 Euler–Mahonian Statistics Via Polyhedral Geometry Matthias Beck 5

  12. More Geometry [Euler] [MacMahon] π ∈ S n t des( π ) π ∈ S n t des( π ) q maj( π ) � � ( k + 1) n t k = q t k = � � [ k + 1] n � n (1 − t ) n +1 j =0 (1 − tq j ) k ≥ 0 k ≥ 0 � � x ∈ R n : 0 ≤ x π ( n ) ≤ x π ( n − 1) ≤ · · · ≤ x π (1) ≤ 1 , [0 , 1] n = � x π ( j +1) < x π ( j ) if j ∈ Des( π ) π ∈ S n n � j ∈ Des( π ) z 0 z π (1) z π (2) · · · z π ( j ) � � � [ k + 1] z j z k Theorem 0 = � n � � 1 − z 0 z π (1) z π (2) · · · z π ( j ) j =0 j =1 k ≥ 0 π ∈ S n Remark Philosophy very close to that of P -partitions MacMahon’s theorem follows by setting z 0 = t and z 1 = z 2 = · · · = z n = q Euler–Mahonian Statistics Via Polyhedral Geometry Matthias Beck 5

  13. Type-B Permutation Statistics ( π, ǫ ) — signed permutation with π ∈ S n and ǫ ∈ {± 1 } Use the natural decent statistics � � Des( π ) := j : ǫ j π ( j ) > ǫ j +1 π ( j + 1) [ ǫ 0 π (0) := 0] des( π ) := # Des( π ) � maj( π ) := j j ∈ Des( π ) Sample Theorem 4 [Brenti, Steingr´ ımsson] ( π,ǫ ) ∈ B n t des( π,ǫ ) � (2 k + 1) n t k = � (1 − t ) n +1 k ≥ 0 Sample Theorem 5 [Chow–Gessel] ( π,ǫ ) ∈ B n s neg( ǫ ) t des( π,ǫ ) q maj( π,ǫ ) � ([ k + 1] q + s [ k ] q ) n t k = � � n j =0 (1 − tq j ) k ≥ 0 Euler–Mahonian Statistics Via Polyhedral Geometry Matthias Beck 6

  14. Type-B Geometry [Brenti, Steingr´ ımsson] ( π,ǫ ) ∈ B n t des( π,ǫ ) � (2 k + 1) n t k = � (1 − t ) n +1 k ≥ 0 Use the type-B arrangement { x j = ± x k , x j = 0 : 1 ≤ j < k ≤ n } to triangulate [ − 1 , 1] n : � � x ∈ R n : 0 ≤ ǫ n x π ( n ) ≤ ǫ n − 1 x π ( n − 1) ≤ · · · ≤ ǫ 1 x π (1) ≤ 1 [ − 1 , 1] n = � ǫ j +1 x π ( j +1) < ǫ j x π ( j ) if j ∈ Des( π, ǫ ) ( π,ǫ ) ∈ B n Each simplex on the right is unimodular with Ehrhart series t #[ strict inequalities ] (1 − t ) n +1 Euler–Mahonian Statistics Via Polyhedral Geometry Matthias Beck 7

  15. More Type-B Geometry [Chow–Gessel] ( π,ǫ ) ∈ B n s neg( ǫ ) t des( π,ǫ ) q maj( π,ǫ ) � ([ k + 1] q + s [ k ] q ) n t k = � � n j =0 (1 − tq j ) k ≥ 0 � � x ∈ R n : 0 ≤ ǫ n x π ( n ) ≤ ǫ n − 1 x π ( n − 1) ≤ · · · ≤ ǫ 1 x π (1) ≤ 1 [ − 1 , 1] n = � ǫ j +1 x π ( j +1) < ǫ j x π ( j ) if j ∈ Des( π, ǫ ) ( π,ǫ ) ∈ B n n � � � � w j [ k + 1] z j + w − j z − 1 z k Theorem − j [ k ] z − 1 0 = − j j =1 k ≥ 0 ǫ j � z 0 z ǫ 1 ǫ 1 π (1) z ǫ 2 ǫ 2 π (2) · · · z ǫ j π ( j ) j ∈ Des( π,ǫ ) � � � z − 1 w j − j w − j n � � ǫ j � 1 − z 0 z ǫ 1 ǫ 1 π (1) z ǫ 2 ǫ j =1 ǫ j = − 1 ( π,ǫ ) ∈ B n ǫ 2 π (2) · · · z ǫ j π ( j ) j =0 Chow–Gessel’s theorem follows with z 0 = t , z 1 = · · · = z n = z − 1 − 1 = · · · = z − 1 − n = q , w − 1 = · · · = w − n = s , and w 1 = · · · = w n = 1 Euler–Mahonian Statistics Via Polyhedral Geometry Matthias Beck 8

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend