eta products bps states and k3 surfaces
play

Eta-Products, BPS States and K3 Surfaces YANG-HUI HE Dept of - PowerPoint PPT Presentation

Eta-Products, BPS States and K3 Surfaces YANG-HUI HE Dept of Mathematics, City University, London; School of Physics, NanKai University; Merton College, University of Oxford University of Bath, Nov. 2014 YANG-HUI HE (London/Tianjin/Oxford)


  1. Eta-Products, BPS States and K3 Surfaces YANG-HUI HE Dept of Mathematics, City University, London; School of Physics, NanKai University; Merton College, University of Oxford University of Bath, Nov. 2014 YANG-HUI HE (London/Tianjin/Oxford) Multiplicative Bath, Nov, 2014 1 / 26

  2. Acknowledgements 1308.5233 YHH, John McKay 1211.1931 YHH, John McKay, James Read; 1309.2326 YHH, James Read 1402.3846 YHH, Mark van Loon 1410.2227 Sownak Bose, James Gundry, YHH YANG-HUI HE (London/Tianjin/Oxford) Multiplicative Bath, Nov, 2014 2 / 26

  3. A Pair of Classical Functions  ∞ ∞ (1 − q n ) − 1 = π k q k ϕ ( q ) = � �    n =1 k =0 Euler ϕ and Dedekind η : ∞ 1 1 (1 − q n ) = q 24 ϕ ( q ) − 1 � η ( q ) = q  24   n =1 Notation: upper-half plane H := { z : Im( z ) > 0 } ; nome q = exp(2 πiz ) Remarks, 24 is special mathematically and physically q-expansion π k = # integer partitions of k 1 η is modular form of weight 1 24 is crucial ( 24 comes from ζ ( − 1) through 2 : q Bernoulli B 2 and Eisenstein E 2 ( q ) ) Familiar to string theorists, bosonic oscillator partition function ∞ α − n · α n = � ∞ d n q n = ϕ ( q ) 24 = qη ( q ) − 24 ; Hardy-Ramanujan G ( q ) := Tr q � n =1 n =0 gives asymptotics ❀ Hagedorn (24 comes from conformal anomaly ζ ( − 1) ) Rmk: 24 iff modularity of 1-loop diagram YANG-HUI HE (London/Tianjin/Oxford) Multiplicative Bath, Nov, 2014 3 / 26

  4. Elliptic Curves For elliptic curve y 2 = 4 x 3 − g 2 x − g 3 , two (related) functions “discriminate” – test isomorphism/inequivalent modular forms  ∆ = g 3 2 − 27 g 2 Modular Discriminant:  3 j = 1728 g 3 θ E 8 Klein j-Invariant: ∆ = 2  ∆ In terms of modular parameter z , ( x, y ) = ( ℘ ( z ) , ℘ ′ ( z )) ∞ ∞ ∆( z ) = η ( z ) 24 := q (1 − q n ) 24 = � � τ ( n ) q n n =1 n =1 Similarly (only 1980’s! by Borcherds in his proof of Moonshine) � 1 p − 1 � � (1 − p n q m ) c n ∗ m j ( p ) − j ( q ) = q m,n =1 c n q n = 1 for j ( q ) = � q + 744 + 196884 q + . . . n YANG-HUI HE (London/Tianjin/Oxford) Multiplicative Bath, Nov, 2014 4 / 26

  5. Multiplicativity Multiplicative Function/Sequence { a n } (with a 1 = 1 ) (Completely) Multiplicative : a m ∗ n = a m a n , m, n ∈ Z > 0 ; (Weakly) Multiplicative : a m ∗ n = a m a n , gcd( m, n ) = 1 ; a n Rmk: Dirichlet transform ❀ interesting: L ( s ) = � n s , e.g. n =1 a n = 1 ❀ L ( s ) = ζ ( s ) ∞ Ramanujan: ∆( q ) = qG ( q ) − 1 = τ ( n ) q n ❀ Ramanujan tau-function τ ( n ) � n =1 is (weakly) multiplicative: n 1 2 3 4 5 6 7 8 9 10 τ ( n ) 1 − 24 252 − 1472 4830 − 6048 − 16744 84480 − 113643 − 115920 24 is crucial in ∆( z ) = η ( z ) 24 24 24 τ ( n ) 2 ≡ c n ( j ) 2 ≡ 42(mod70) Fun fact [YHH-McKay, 2014] � � n =1 n =1 YANG-HUI HE (London/Tianjin/Oxford) Multiplicative Bath, Nov, 2014 5 / 26

  6. Multiplicative Eta-Products η ( q ) 24 is multiplicative, are there others made from η ? Define Frame Shape [J. S. Frame, or cycle shape] ( t : cycle length) t t � � η ( q n i ) F ( z ) = [ n 1 , n 2 , . . . , n t ] := η ( n i z ) = i =1 i =1 Dummit-Kisilevsky-McKay (1982): a 1 = 1 and [ n 1 , n 2 , . . . , n t ] is partition of 24 Balanced: n 1 > . . . > n t , n 1 n t = n 2 n t − 1 = . . . there are precisely 30 which are multiplicative out of π (24) = 1575 each is a modular form of weight k = t/ 2 , level N = n 1 n t , Jacobi character χ  d − 1 � N   az + b �  2  a b ) = ( cz + d ) kχkF ( z ) ,  ( − 1) , d odd d  ∈ Γ0( N ) F ( χ = , � d � cz + d c d  , d even  N in summary: YANG-HUI HE (London/Tianjin/Oxford) Multiplicative Bath, Nov, 2014 6 / 26

  7. The 30 k N eta-product χ k N eta-product χ 2 15 [15 , 5 , 3 , 1] 1 [124] = ∆( q ) 12 1 1 14 [14 , 7 , 2 , 1] 1 [28 , 18] 8 2 1 24 [12 , 6 , 4 , 2] 1 [36 , 16] [112 , 12] 6 3 1 11 1 [212] [102 , 22] 4 1 20 1 � − 1 [92 , 32] [44 , 22 , 14] � 27 1 5 4 d k eta-product [82 , 42] [62 , 32 , 22 , 12] 32 1 4 6 1 “ 3 [83] 2 ” [64] [54 , 14] 36 1 5 1 � − 23 “ 1 2 ” [24] � [44 , 24] 1 23 [23 , 1] 8 1 d � − 11 � [38] 9 1 44 [22 , 2] d � − 7 � − 2 � [82 , 4 , 2 , 12] � 63 [21 , 3] 3 8 d d � − 20 � − 7 � [73 , 13] � 7 80 [20 , 4] d d � − 3 � − 3 � [63 , 23] � 108 [18 , 6] 12 d d � − 2 � − 1 [46] � � 16 128 [16 , 8] d d � − 1 [122] � 144 d Q: Do these show up as partition functions in physics? YANG-HUI HE (London/Tianjin/Oxford) Multiplicative Bath, Nov, 2014 7 / 26

  8. Type II on K 3 × T 2 4-D, N = 4 theory ( ≃ heterotic on T 6 ) Any other preserving N = 4 ? cf. Aspinwall-Morrison: freely-acting quotients of K3, a total of 14, Nikulin Classification (preserves the (2 , 0) -form, 1979): Z 2 Z 3 Z 4 Z n =2 ,..., 8 , m =2 , 3 , 4 , Z 2 × Z 4 , Z 2 × Z 6 , 2 , 2 CHL orbifold [Chaudhuri-Hockney-Lykken, 1995]: S 1 × S 1 with Nikulin involution and simultaneously Type IIB on K 3 × ˜ Z t � S 1 by exp(2 πi/t ) Dual to het on T 4 × ˜ S 1 × S 1 with Z t � Γ 20 , 4 Narain lattice YANG-HUI HE (London/Tianjin/Oxford) Multiplicative Bath, Nov, 2014 8 / 26

  9. Dyonic Spectrum and 1/2-BPS States Dyons ( q e , q m ) [cf. precision BH micro-state counting, Sen-David, 2006]: D5-branes wrapping K 3 × S 1 and Q 1 D1-branes wrapping S 1 S 1 with (2 − k, J ) units of ( S 1 , ˜ KK monopole for ˜ S 1 ) momentum q 2 q 2 e = 2( k − 2) /t , m = 2( Q 1 − 1) , q e · q m = J in the unorbifolded case (Het on T 6 ): 1/2-BPS states with charge n = 1 2 q 2 e has degeneracy [Sen, Dabholkar-Denef-Moore-Pioline, 2007] η ( q ) − 24 = ∆( q ) − 1 = [1 24 ] − 1 = 1 � d n q n 16 n = − 1 In general [Govindarajan-Krishna, 2009]: t η ( n i z )) − 1 = 1 � � d n q n/t ( 16 n = − 1 i =1 in summary: YANG-HUI HE (London/Tianjin/Oxford) Multiplicative Bath, Nov, 2014 9 / 26

  10. The 14 k N eta-product χ Nikulin K3 [1 24 ] = ∆( q ) 12 1 1 - [2 8 , 1 8 ] 8 2 1 Z 2 [3 6 , 1 6 ] 6 3 1 Z 3 [2 12 ] 4 1 Z 2 × Z 2 � � [4 4 , 2 2 , 1 4 ] − 1 5 4 Z 4 d [6 2 , 3 2 , 2 2 , 1 2 ] 4 6 1 Z 5 [5 4 , 1 4 ] 5 1 Z 6 [4 4 , 2 4 ] 8 1 Z 2 × Z 4 [3 8 ] 9 1 Z 3 × Z 3 � � [8 2 , 4 , 2 , 1 2 ] − 2 3 8 Z 7 d � � [7 3 , 1 3 ] − 7 7 Z 8 d � � [6 3 , 2 3 ] − 3 12 Z 2 × Z 6 d � � [4 6 ] − 1 16 Z 4 × Z 4 d [11 2 , 1 2 ] 2 11 1 Z 11 Rmk: No k ≤ 1 and only one k = 2 YANG-HUI HE (London/Tianjin/Oxford) Multiplicative Bath, Nov, 2014 10 / 26

  11. Special K3 Surfaces X � � � = H 2 ( X ; Z ) ∩ H 1 , 1 ( X ) = N´ eron-Severi Lattice NS ( X ) := ker γ → γ Ω Divisors/(Alg. equiv.); Picard Number ρ ( X ) = rk( NS ( X )) Mordell-Weil Lattice MW ( X ) = rk( X Q ) (cf. Birch-Swinerton-Dyer for E ) K3 Alg. K3 Elliptic K3 . . . Exceptional Generically Γ 20 ⊂ E 8 ( − 1) 2 ⊕ ( U 2 ) 3 NS ( X ) { 0 } H Z B Z ⊕ F Z . . . ρ ( X ) 0 1 2 . . . 20 Classification results (each a subset) Exceptional (“singular”) [Shioda-Inose, 1977]: top ρ ( X ) = 20 ; 1:1 with �� � a b integral binary quadratic forms SL (2; Z ) similarity; b c Extremal non-Elliptic: ??? Extremal Elliptic [Shimada-Zhang]: + finite MW ( X ) , a total of 325; Extremal Semi-Stable Elliptic [Miranda-Persson, 1988]: + Type I n fibres only, a total of 112 YANG-HUI HE (London/Tianjin/Oxford) Multiplicative Bath, Nov, 2014 11 / 26

  12. Elliptic Semi-Stable Extremal K3 K 3 → P 1 with elliptic fibration: { y 2 = 4 x 3 − g 2 ( s ) x − g 3 ( s ) } ⊂ C [ x, y, s ] Only I n sing. fibres, s.t. I n partition of 24 , i.e., EssE ∼ Frame Shape Shioda-Tate: ρ = � ( n i − 1) + rk( MW ) + 2 = 26 + rk( MW ) − t ❀ t ≥ 6 i Extremal: t = 2 k = 6 Klein j-invariant is a rational function 1728 j ( s ) = g 3 g 3 2 ( s ) 2 ( s ) 1 3 ( s ) : P 1 → P 1 , J ( s ) = ∆( s ) = s − s.t. g 3 2 ( s ) − 27 g 2 8 preimages of J ( s ) = 0 all multiplicity (ramification index) 3; 12 preimages of J ( s ) = 1 with ramification index 2; t preimages of J ( s ) = ∞ , ramification indices [ n 1 , . . . , n t ] ; ? ∃ ramification points x 1 , . . . , x m � = (0 , 1 , ∞ ) but for t = 6 , no such points. YANG-HUI HE (London/Tianjin/Oxford) Multiplicative Bath, Nov, 2014 12 / 26

  13. Grothendieck’s Dessin d’Enfant → P 1 ramified only at (0 , 1 , ∞ ) ı Map: rational map β : Σ − Belyˇ Theorem [Belyˇ ı]: (1980) β exists ⇔ Σ can be defined over Q ( β, Σ) Belyˇ ı Pair Dessin d’Enfants = β − 1 ([0 , 1] ∈ P 1 ) ⊂ Σ bi-partite graph on Σ : label all the preimages β − 1 (0) black and β − 1 (1) white, then β − 1 ( ∞ ) lives one per face and β − 1 ([0 , 1]) gives connectivity B blacks and W whites, with valency of each = ramification index   r 0 (1) , r 0 (2) , . . . , r 0 ( B )       Ramification data / Passport: r 1 (1) , r 1 (2) , . . . , r 1 ( W )     r ∞ (1) , r ∞ (2) , . . . , r ∞ ( I )   Rmk: Dimer Models on T 2 = Quivers on Toric CY3 = Dessins [Hanany-YHH-Jejjala-Pasuconis-Ramgoolam-Rodriguez-Gomez] YANG-HUI HE (London/Tianjin/Oxford) Multiplicative Bath, Nov, 2014 13 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend