error correc on through catastrophes
play

Error correc'on through catastrophes Arvind Murugan Physics and - PowerPoint PPT Presentation

Error correc'on through catastrophes Arvind Murugan Physics and the James Franck Ins3tute University of Chicago Kine%c Proofreading Stochas%c algorithms Search strategies Errors in enzyma'c reac'ons T G C T A - C - A - G - C - T - T -


  1. Error correc'on through catastrophes Arvind Murugan Physics and the James Franck Ins3tute University of Chicago

  2. Kine%c Proofreading Stochas%c algorithms Search strategies

  3. Errors in enzyma'c reac'ons T G C T A - C - A - G - C - T - T - G - T - C - G - A - A - A - G - C DNA polymerase

  4. Errors in enzyma'c reac'ons T G C A - C - A - G - C - T - T T - G - T - C - G - A - A - A - G - C DNA polymerase

  5. Errors in enzyma'c reac'ons T C T G A - C - A - G - C - T - T - G - T - C - G - A - A - A - G - C DNA polymerase E ( A ≡ G ) − E ( A ≡ T ) = ∆

  6. Errors in enzyma'c reac'ons

  7. Errors in enzyma'c reac'ons T C T G A - C - A - G - C - T - T - G - T - C - G - A - A - A - G - C DNA polymerase E ( A ≡ G ) − E ( A ≡ T ) = ∆

  8. Errors in enzyma'c reac'ons • Protein synthesis • tRNA charging • T-cell receptors • …. e − ∆ How do you reduce effec?ve error rate below kT (Fixed Δ )

  9. John Hopfield (1974) Kine'c Proofreading Jacques Ninio (1975) Enzyme E + Wrong + Right (wrong substrate)W + E + R (right substrate) Substrate W Substrate R EW E 1 R 1 EW i E R i EW i+1 ER i+1 EW Wrong ER Product Right Wrong product + E !Δ Product Energy difference Delta Right product + E

  10. John Hopfield (1974) Kine'c Proofreading Jacques Ninio (1975) Enzyme E + Wrong + Right (wrong substrate, eg. ‘G’)W + E + R (right substrate, eg. ‘T’) Substrate W Substrate R EW 1 ER 1 EW i ER i e ∆ e ∆ EW i+1 ER i+1 EW ER f f Wrong Right Product Wrong product + E Right product + E Product η ∼ e − 2 ∆

  11. A.M, D.Huse, S.Leibler, PNAS 2012 General Principle R W E EW ER EW 1 ER 1 EW i ER i ER j EW j ER 2 EW 2 W-Product + E R-Product + E

  12. A.M, D.Huse, S.Leibler, PNAS 2012 General Principle ∆ e ∆ e R W ∆ e E ∆ e EW ER - ∆ e EW 1 ER 1 ER i EW i e ∆ ER j EW j ER 2 EW 2 e ∆ W-Product + E R-Product + E

  13. General network Red lines –checkpoints, in Start parallel. e ∆ e ∆ e ∆ e ∆ e ∆ e ∆ e ∆ Finish Can n parallel paths, each with a failure rate η ∼ e − ∆ be combined to give η ∼ e − n ∆

  14. Error correc'ng kine'c limit E+S Reac?on is completed only along green path. Reac?on interrupted at red checkpoints – ‘ catastrophe ’ To finish: ES must get past all red checkpoints. Exponen?ally unlikely.

  15. Error correc'ng kine'c limit E+S L ES Reac?on coordinate (a measure of reac?on progress)

  16. Reac'on coordinate & progress Finish Exponen?ally unlikely -> catastrophe L Start %me

  17. Catastrophes at checkpoints E+S d ∆ d e ES f f EW i ER i f f p R p W Forward > forw. = forw. = e ∆ d + f d + f ! n p W forw. ! e − n ∆ when f ⌧ d, e ∆ d Need η ⇠ p R forw. when f ⌧ d, e ∆ d Low error rate but very slow comple%on rate

  18. Catastrophes and rescues Finish E+S Exponen?ally unlikely -> catastrophe L ES Start %me rescue

  19. Catastrophes and rescues f cat < f res unbounded L f cat > f res bounded t

  20. Reac'on coordinate & progress p R cat. < p res. < p W p R cat. < p W p res. ⌧ p R cat. < p W cat. < p res. cat. cat. Error rate R Dissipa?on/Time W η ∼ e − n ∆ , η ∼ e − ∆ , η ∼ e − n ∆ 0 , T ∼ Λ n T ∼ n γ T ∼ n κ Lowest error, High error, Low error, Highest ?me Low ?me Low ?me

  21. Energy vs Error Rate tradeoff E+S D T T D T D # of fu?le cycles ~ # of ATP molecules used ~ dissipa?on ES

  22. Dynamic instability of microtubules unbounded L bounded t Tim Mitchison (HMS)

  23. Non-equilibrium growth of microtubules

  24. Microtubule growth regimes f cat < f res unbounded L f cat > f res bounded t

  25. Microtubule growth as a search strategy chromosome microtubule Wrong direc3on Right direc3on Proposal: Set <catastrophe rate> ~ <rescue rate> Bounded Signaling molecule cat. > rescue (lowers cat.) Unbounded cat. < rescue Bounded-unbounded transi?on point

  26. Microtubules and foraging Foraging ants Microtubules When should you return home and try again? Kirschner/Gerhart

  27. Algorithms that get stuck

  28. Algorithms that get stuck Stuck Start Finish Stuck Stuck Restarts cut tail of first passage ?me distribu?on Example: Simulated annealing on a glassy landscape

  29. Duality: Errors vs (first passage) Time Wrong finish Start Right Finish Wrong finish Wrong finish Restarts cut tail of first passage ?me distribu?on Example: Simulated annealing on a glassy landscape

  30. Summary Proofreading = Dynamic instability in chemical space (catastrophes and rescues) Happy medium in error-energy tradeoff Happy medium in returns home (search, stochas?c algorithms..)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend