enumerating numerical semigroups using polyhedral geometry
play

Enumerating numerical semigroups using polyhedral geometry - PowerPoint PPT Presentation

Enumerating numerical semigroups using polyhedral geometry Christopher ONeill San Diego State University cdoneill@sdsu.edu Joint with Winfried Bruns, Pedro Garc a S anchez, and Dane Wilburne May 4, 2019 Christopher ONeill (SDSU)


  1. Enumerating numerical semigroups using polyhedral geometry Christopher O’Neill San Diego State University cdoneill@sdsu.edu Joint with Winfried Bruns, Pedro Garc´ ıa S´ anchez, and Dane Wilburne May 4, 2019 Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 1 / 18

  2. Numerical semigroups Definition A numerical semigroup S ⊂ Z ≥ 0 : closed under addition , | Z ≥ 0 \ S | < ∞ . Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 2 / 18

  3. Numerical semigroups Definition A numerical semigroup S ⊂ Z ≥ 0 : closed under addition , | Z ≥ 0 \ S | < ∞ . Example: � � 0 , 6 , 9 , 12 , 15 , 18 , 20 , 21 , 24 , . . . McN = � 6 , 9 , 20 � = . . . , 36 , 38 , 39 , 40 , 41 , 42 , 44 → Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 2 / 18

  4. Numerical semigroups Definition A numerical semigroup S ⊂ Z ≥ 0 : closed under addition , | Z ≥ 0 \ S | < ∞ . Example: “McNugget Semigroup” � � 0 , 6 , 9 , 12 , 15 , 18 , 20 , 21 , 24 , . . . McN = � 6 , 9 , 20 � = . . . , 36 , 38 , 39 , 40 , 41 , 42 , 44 → Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 2 / 18

  5. Numerical semigroups Definition A numerical semigroup S ⊂ Z ≥ 0 : closed under addition , | Z ≥ 0 \ S | < ∞ . Example: “McNugget Semigroup” � � 0 , 6 , 9 , 12 , 15 , 18 , 20 , 21 , 24 , . . . McN = � 6 , 9 , 20 � = . . . , 36 , 38 , 39 , 40 , 41 , 42 , 44 → Example: S = � 6 , 9 , 18 , 20 , 32 � Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 2 / 18

  6. Numerical semigroups Definition A numerical semigroup S ⊂ Z ≥ 0 : closed under addition , | Z ≥ 0 \ S | < ∞ . Example: “McNugget Semigroup” � � 0 , 6 , 9 , 12 , 15 , 18 , 20 , 21 , 24 , . . . McN = � 6 , 9 , 20 � = . . . , 36 , 38 , 39 , 40 , 41 , 42 , 44 → Example: S = � 6 , 9 , 18 , 20 , 32 � Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 2 / 18

  7. Numerical semigroups Definition A numerical semigroup S ⊂ Z ≥ 0 : closed under addition , | Z ≥ 0 \ S | < ∞ . Example: “McNugget Semigroup” � � 0 , 6 , 9 , 12 , 15 , 18 , 20 , 21 , 24 , . . . McN = � 6 , 9 , 20 � = . . . , 36 , 38 , 39 , 40 , 41 , 42 , 44 → Example: S = � 6 , 9 , 18 , 20 , 32 � = McN Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 2 / 18

  8. Numerical semigroups Definition A numerical semigroup S ⊂ Z ≥ 0 : closed under addition , | Z ≥ 0 \ S | < ∞ . Example: “McNugget Semigroup” � � 0 , 6 , 9 , 12 , 15 , 18 , 20 , 21 , 24 , . . . McN = � 6 , 9 , 20 � = . . . , 36 , 38 , 39 , 40 , 41 , 42 , 44 → Example: S = � 6 , 9 , 18 , 20 , 32 � = McN Fact Every numerical semigroup has a unique minimal generating set. Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 2 / 18

  9. Numerical semigroups Definition A numerical semigroup S ⊂ Z ≥ 0 : closed under addition , | Z ≥ 0 \ S | < ∞ . Example: “McNugget Semigroup” � � 0 , 6 , 9 , 12 , 15 , 18 , 20 , 21 , 24 , . . . McN = � 6 , 9 , 20 � = . . . , 36 , 38 , 39 , 40 , 41 , 42 , 44 → Example: S = � 6 , 9 , 18 , 20 , 32 � = McN Fact Every numerical semigroup has a unique minimal generating set. Embedding dimension : e( S ) = # minimal generators Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 2 / 18

  10. Numerical semigroups Definition A numerical semigroup S ⊂ Z ≥ 0 : closed under addition , | Z ≥ 0 \ S | < ∞ . Example: “McNugget Semigroup” � � 0 , 6 , 9 , 12 , 15 , 18 , 20 , 21 , 24 , . . . McN = � 6 , 9 , 20 � = . . . , 36 , 38 , 39 , 40 , 41 , 42 , 44 → Example: S = � 6 , 9 , 18 , 20 , 32 � = McN Fact Every numerical semigroup has a unique minimal generating set. Embedding dimension : e( S ) = # minimal generators Multiplicity : m( S ) = smallest nonzero element Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 2 / 18

  11. Frobenius number Fix a numerical semigroup S = � n 1 , . . . , n k � . Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 3 / 18

  12. Frobenius number Fix a numerical semigroup S = � n 1 , . . . , n k � . Definition F( S ) = max( N \ S ) is the Frobenius number of S . Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 3 / 18

  13. Frobenius number Fix a numerical semigroup S = � n 1 , . . . , n k � . Definition F( S ) = max( N \ S ) is the Frobenius number of S . Example If S = � 6 , 9 , 20 � , then F( S ) = 43 since N \ S = { 1 , 2 , 3 , 4 , 5 , 7 , 8 , 10 , 11 , 13 , . . . , 31 , 34 , 37 , 43 } . Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 3 / 18

  14. Frobenius number Fix a numerical semigroup S = � n 1 , . . . , n k � . Definition F( S ) = max( N \ S ) is the Frobenius number of S . Example If S = � 6 , 9 , 20 � , then F( S ) = 43 since N \ S = { 1 , 2 , 3 , 4 , 5 , 7 , 8 , 10 , 11 , 13 , . . . , 31 , 34 , 37 , 43 } . Computing the Frobenius number for general S is hard . Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 3 / 18

  15. Frobenius number Fix a numerical semigroup S = � n 1 , . . . , n k � . Definition F( S ) = max( N \ S ) is the Frobenius number of S . Example If S = � 6 , 9 , 20 � , then F( S ) = 43 since N \ S = { 1 , 2 , 3 , 4 , 5 , 7 , 8 , 10 , 11 , 13 , . . . , 31 , 34 , 37 , 43 } . Computing the Frobenius number for general S is hard . If S = � n 1 , n 2 � , then F( S ) = n 1 n 2 − ( n 1 + n 2 ). Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 3 / 18

  16. Frobenius number Fix a numerical semigroup S = � n 1 , . . . , n k � . Definition F( S ) = max( N \ S ) is the Frobenius number of S . Example If S = � 6 , 9 , 20 � , then F( S ) = 43 since N \ S = { 1 , 2 , 3 , 4 , 5 , 7 , 8 , 10 , 11 , 13 , . . . , 31 , 34 , 37 , 43 } . Computing the Frobenius number for general S is hard . If S = � n 1 , n 2 � , then F( S ) = n 1 n 2 − ( n 1 + n 2 ). If S = � n 1 , n 2 , n 3 � , then there is a fast algorithm for F ( S ). Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 3 / 18

  17. Frobenius number Fix a numerical semigroup S = � n 1 , . . . , n k � . Definition F( S ) = max( N \ S ) is the Frobenius number of S . Example If S = � 6 , 9 , 20 � , then F( S ) = 43 since N \ S = { 1 , 2 , 3 , 4 , 5 , 7 , 8 , 10 , 11 , 13 , . . . , 31 , 34 , 37 , 43 } . Computing the Frobenius number for general S is hard . If S = � n 1 , n 2 � , then F( S ) = n 1 n 2 − ( n 1 + n 2 ). If S = � n 1 , n 2 , n 3 � , then there is a fast algorithm for F ( S ). Formulas in a few other special cases. Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 3 / 18

  18. The Ap´ ery set Fix a numerical semigroup S with m( S ) = m . Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 4 / 18

  19. The Ap´ ery set Fix a numerical semigroup S with m( S ) = m . Definition The Ap´ ery set of S is Ap( S ) = { a ∈ S : a − m / ∈ S } Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 4 / 18

  20. The Ap´ ery set Fix a numerical semigroup S with m( S ) = m . Definition The Ap´ ery set of S is Ap( S ) = { a ∈ S : a − m / ∈ S } If S = � 6 , 9 , 20 � , then Ap( S ) = { 0 , 49 , 20 , 9 , 40 , 29 } . Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 4 / 18

  21. The Ap´ ery set Fix a numerical semigroup S with m( S ) = m . Definition The Ap´ ery set of S is Ap( S ) = { a ∈ S : a − m / ∈ S } If S = � 6 , 9 , 20 � , then Ap( S ) = { 0 , 49 , 20 , 9 , 40 , 29 } . For 2 mod 6: { 2 , 8 , 14 , 20 , 26 , 32 , . . . } ∩ S = { 20 , 26 , 32 , . . . } For 3 mod 6: { 3 , 9 , 15 , 21 , . . . } ∩ S = { 9 , 15 , 21 , . . . } For 4 mod 6: { 4 , 10 , 16 , 22 , . . . } ∩ S = { 40 , 46 , 52 , . . . } Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 4 / 18

  22. The Ap´ ery set Fix a numerical semigroup S with m( S ) = m . Definition The Ap´ ery set of S is Ap( S ) = { a ∈ S : a − m / ∈ S } If S = � 6 , 9 , 20 � , then Ap( S ) = { 0 , 49 , 20 , 9 , 40 , 29 } . For 2 mod 6: { 2 , 8 , 14 , 20 , 26 , 32 , . . . } ∩ S = { 20 , 26 , 32 , . . . } For 3 mod 6: { 3 , 9 , 15 , 21 , . . . } ∩ S = { 9 , 15 , 21 , . . . } For 4 mod 6: { 4 , 10 , 16 , 22 , . . . } ∩ S = { 40 , 46 , 52 , . . . } Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 4 / 18

  23. The Ap´ ery set Fix a numerical semigroup S with m( S ) = m . Definition The Ap´ ery set of S is Ap( S ) = { a ∈ S : a − m / ∈ S } If S = � 6 , 9 , 20 � , then Ap( S ) = { 0 , 49 , 20 , 9 , 40 , 29 } . For 2 mod 6: { 2 , 8 , 14 , 20 , 26 , 32 , . . . } ∩ S = { 20 , 26 , 32 , . . . } For 3 mod 6: { 3 , 9 , 15 , 21 , . . . } ∩ S = { 9 , 15 , 21 , . . . } For 4 mod 6: { 4 , 10 , 16 , 22 , . . . } ∩ S = { 40 , 46 , 52 , . . . } Christopher O’Neill (SDSU) Enumerating numerical semigroups May 4, 2019 4 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend