entropy minimizing mechanism for differential privacy of
play

Entropy-minimizing Mechanism for Differential Privacy of - PowerPoint PPT Presentation

Entropy-minimizing Mechanism for Differential Privacy of Discrete-time Linear Feedback Systems Yu Wang, Zhenqi Huang, Sayan Mitra and Geir E. Dullerud September 25, 2014 General Question Trade-off between privacy and accuracy: a


  1. Entropy-minimizing Mechanism for Differential Privacy of Discrete-time Linear Feedback Systems Yu Wang, Zhenqi Huang, Sayan Mitra and Geir E. Dullerud September 25, 2014

  2. General Question Trade-off between ”privacy” and ”accuracy”: a common strategy to protect some data private is to randomize it, but this undermines the accuracy of the data. Example 1 : Adversary A Noise N ( t ) U ( t ) V ( t ) X ( t ) Z ( t ) Plant P Mechanism M + Y ( t ) Controller C Figure: Block Diagram for ǫ -Differentially Private Discrete-time Linear Feedback System 1 Huang et al., HiCoNS 14.

  3. Preliminaries In this work, we use the concept of ǫ -differential privacy as a measure of privacy. It originates from the study of privacy-preserving queries of datasets 2 and later extends to dynamic systems. Definition The mechanism M is ǫ -differentially private if the inequality P [ M ( x 1 ) ⊆ O ] ≤ exp ( ǫ � x 1 − x 2 � 1 ) P [ M ( x 2 ) ⊆ O ] (1) holds for any inputs x 1 , x 2 and a set of possible outputs O , where � x � 1 = � n i =1 | x i | . 2 C. Dwork, 2006.

  4. Preliminaries Accuracy is measured by Shannon entropy. For a random variable X on R n with probability distribution function f ( x ), � H ( X ) = − R n f ( x ) ln( x ) d x (2)

  5. One-shot Query Noise N ( X ) Input X Output Y Mechanism M Figure: Block Diagram for a ǫ -Differentially Private Mechanism Conditions: ◮ X , Y ∈ ( R n , � · � 1 ) ◮ the joint p.d.f. p ( x , y ) is absolute continuous; ◮ the noise N ( X ) is zero-mean; ◮ the accuracy is measured by H ( M ) = sup X H ( Y ).

  6. Theorem For an ǫ -differentially private mechanism M with input set ( R n , � · � 1 ) , we have H ( M ) ≥ n − n ln( ǫ/ 2) and the minimum is � ǫ 2 ) n exp( − ǫ � y − x � 1 ) = � n 2 e − ǫ | y i − x i | � achieved by p ( x , y ) = ( ǫ . i =1 Trade-off: Privacy ↑ = ⇒ ǫ ↓ = ⇒ H ( M ) ↑ = ⇒ Accuracy ↓

  7. Control Systems Adversary A Noise N ( t ) U ( t ) V ( t ) X ( t ) Z ( t ) Plant P Mechanism M + Y ( t ) Controller C Conditions: ◮ X ( t ) , Y ( t ) , Z ( t ) , U ( t ) , V ( t ) ∈ ( R n , � · � 1 ) ◮ zero input: U ( t ) = 0 ◮ unit gain feedback: V ( t ) = Y ( t ) = Z ( t ) ◮ dynamics: X ( t + 1) = AX ( t ) + BV ( t ).

  8. Control Systems Adversary A Noise N ( t ) U ( t ) V ( t ) X ( t ) Z ( t ) Plant P Mechanism M + Y ( t ) Controller C The adversary A only has access to the randomized outputs { Z ( i ) | i ∈ [ t ] } . Since t − 1 � A t − i − 1 BZ ( i ) , X ( t ) = A t X (0) + (3) i =0 protecting the ǫ -differential privacy of the initial system state is equivalent to protecting the ǫ -differential privacy of the whole trajectory.

  9. Control Systems The adversary A estimates the initial system state from the past history of randomized outputs { Z ( i ) | i ∈ [ t ] } by ˜ X ( t ) = E [ X (0) | Z (0) , Z (1) , . . . , Z ( t )] , (4) The accuracy of the output of the mechanism M at time t ∈ N is measured by � � ˜ H ( M , t ) = H X ( t ) . (5)

  10. Control Systems The mechanism L is ǫ -differentially private up to time t ∈ N , if for any pair of initial states x 1 , x 2 ∈ R n , and output history { z ( i ) | i ∈ [ t ] } , P [ Z (1) = z (1) , . . . , Z ( t ) = z ( t ) | X (0) = x 1 ] P [ Z (1) = z (1) , . . . , Z ( t ) = z ( t ) | X (0) = x 2 ] (6) ≤ exp ( ǫ � x 1 − x 2 � ) . By Bayes formula, (6) is equivalent to h t ( x 1 ) ≤ exp ( ǫ � x 1 − x 2 � ) ˜ ˜ h t ( x 2 ) . (7) where ˜ h t is the probability density function of ˜ X ( t ).

  11. Control Systems Theorem If a mechanism is ǫ -differentially private up to time t ≥ 0 , then H ( L , i ) ≥ n − n ln( ǫ 2) (8) for i ∈ 1 , . . . , t. The equality holds when N (0) ∼ Lap (1 /ǫ ) , and for t ≥ 1 , N ( t ) = AN ( t − 1) . In this case H ( L , 1) = H ( L , 2) = . . . = H ( L , t ) = n − n ln( ǫ 2) . (9)

  12. Proof of Theorem Assume X , Y ∈ R . Problem Minimize: H ( M ) subject to: P [ M ( x 1 ) ⊆ O ] ≤ exp ( ǫ � x 1 − x 2 � 1 ) P [ M ( x 2 ) ⊆ O ]

  13. Proof Step 1 Claim 1: for fixed x , p ( x , y − x ) is even. � H + 1 ( M ) = sup − p ( x , y ) ln p ( x , y ) d y , (10) x ∈ R [ x , ∞ ) � H − 1 ( M ) = sup − p ( x , y ) ln p ( x , y ) d y . (11) x ∈ R ( −∞ , x ]  if y > x , H + 1 ( M ) ≤ H − 1 ( M )  p ( x , y )   or y < x , H + 1 ( M ) > H −  1 ( M ) ,  q ( x , y ) = if y > x , H + 1 ( M ) > H − 1 ( M )  p ( x , 2 x − y )   or y < x , H + 1 ( M ) ≤ H −  1 ( M ) .  (12) H ( N ) = 2 min { H + 1 ( M ) , H − 1 ( M ) } ≤ H + 1 ( M ) + H − 1 ( M ) = H ( M ) , (13)

  14. Proof Step 1 Claim 2: for any x , p ( x , y ) = p (2 a − x , 2 a − y ). � H + ( M ) = sup − p ( x , y ) ln p ( x , y ) d y , (14) x > a R � H − ( M ) = sup − p ( x , y ) ln p ( x , y ) d y . (15) x ≤ a R If H + ( M ) ≤ H − ( M ), then define � p ( x , y ) , x > a , q ( x , y ) = (16) p (2 a − x , 2 a − y ) , x ≤ a , otherwise, define � p (2 a − x , 2 a − y ) , x > a , q ( x , y ) = (17) p ( x , y ) , x ≤ a . H ( N ) = min { H + ( M ) , H − ( M ) } ≤ max { H + ( M ) , H − ( M ) } = H ( M ) , (18)

  15. Proof Step 1 Claim 3: p ( x , y ) = f ( y − x ). Let q ( x , y ) = p ( x , y − x ). By Claim 2, q ( x , y ) = q (2 a − x , − y ). By Claim 1, q (2 a − x , − y ) = q (2 a − x , y ). Now the problem becomes, Problem � Minimize: H ( f ) = − f ( x ) ln f ( x ) d x , [0 , ∞ ) subject to: f ( x ) is absolutely continuous , f ( x ) ≥ 0 , | f ′ ( x ) | ≤ ǫ f ( x ) a.e. , � f ( x ) d x = 1 2 . [0 , ∞ )

  16. Proof Step 2 Claim 4: f ( x ) is decreasing. Let x ∗ be a local minimum on (0 , 1). Then there exists x ∗ ∈ [ a , b ] such that f ( a ) = f ( b ) > f ( x ) for x ∈ ( a , b ). Let � b 1 d = a f ( x ) d x and f ( a )  f ( x ) , x ∈ [0 , a ] ,   h ( x ) = f ( b ) , x ∈ [ a , a + d ] , (19)  f ( x + b − a − d ) , x ∈ [ a + d , ∞ ] .  Then H ( h ) < H ( f ).

  17. Proof Step 2 � ∞ Let F ( x ) = f ( y ) d y . x � ∞ � ∞ | f ′ ( x ) | d y ≥ 1 f ′ ( x ) d y | F ( x ) ≥ ǫ | ǫ x x (20) = 1 ǫ | f ( ∞ ) − f ( x ) | = f ( x ) ǫ In particular, f (0) ≥ ǫ F (0) = ǫ 2 .

  18. Proof Step 2 � ∞ H ( f ) = − f ( x ) ln f ( x ) d x 0 � ∞ � x f ′ ( y ) � � = − f ( x ) ln f (0) + f ( y ) d y d x 0 0 � ∞ �� ∞ f ′ ( y ) = − 1 � 2 ln f (0) − f ( x ) d x d y f ( y ) 0 x (21) � ∞ f ′ ( y ) F ( y ) = − 1 2 ln f (0) − d y f ( y ) 0 � ∞ f ′ ( y ) ≥ − 1 2 ln f (0) − d y ǫ 0 = f (0) − 1 2 ln f (0) ≥ 1 2 − ln( ǫ 2) , ǫ The minimum is achieved by f ( x ) = ǫ 2 exp( − ǫ x ) . (22)

  19. Thanks!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend