energy diffusion in a system of an harmonic oscillators
play

Energy Diffusion in a System of An-harmonic Oscillators Stefano - PowerPoint PPT Presentation

Energy Diffusion: heat equation Energy Diffusion in a System of An-harmonic Oscillators Stefano Olla CEREMADE, Paris Makiko Sasada Keio University, Tokyo Kochi, December 6, 2011 S. Olla - CEREMADE Energy diffusion Energy Diffusion:


  1. Energy Diffusion: heat equation Energy Diffusion in a System of An-harmonic Oscillators Stefano Olla – CEREMADE, Paris Makiko Sasada – Keio University, Tokyo Kochi, December 6, 2011 S. Olla - CEREMADE Energy diffusion

  2. Energy Diffusion: heat equation Chain of Anharmonic oscillators p i , q i ∈ R , i ∈ Λ, ∣ Λ ∣ = N or Λ = Z . H = ∑ [ p 2 2 + V ( q i − q i − 1 ) + U ( q j )] i i = ∑ e i i S. Olla - CEREMADE Energy diffusion

  3. Energy Diffusion: heat equation Chain of Anharmonic oscillators p i , q i ∈ R , i ∈ Λ, ∣ Λ ∣ = N or Λ = Z . H = ∑ [ p 2 2 + V ( q i − q i − 1 ) + U ( q j )] i i = ∑ e i i dq i = p i dt dp i = − ∂ q i H dt S. Olla - CEREMADE Energy diffusion

  4. Energy Diffusion: heat equation Chain of Anharmonic oscillators p i , q i ∈ R , i ∈ Λ, ∣ Λ ∣ = N or Λ = Z . H = ∑ [ p 2 2 + V ( q i − q i − 1 ) + U ( q j )] i i = ∑ e i i dq i = p i dt dp i = − ∂ q i H dt β = T − 1 > 0 dQ β = e − β H dpdq Z β S. Olla - CEREMADE Energy diffusion

  5. Energy Diffusion: heat equation e i = p 2 2 + V ( q i − q i − 1 ) + U ( q i ) i Energy of atom i . S. Olla - CEREMADE Energy diffusion

  6. Energy Diffusion: heat equation e i = p 2 2 + V ( q i − q i − 1 ) + U ( q i ) i Energy of atom i . e i = (  i − 1 , i −  i , i + 1 ) ˙ local conservation of energy. S. Olla - CEREMADE Energy diffusion

  7. Energy Diffusion: heat equation e i = p 2 2 + V ( q i − q i − 1 ) + U ( q i ) i Energy of atom i . e i = (  i − 1 , i −  i , i + 1 ) ˙ local conservation of energy.  i , i + 1 = − p i V ′ ( q i + 1 − q i ) hamiltonian energy currents S. Olla - CEREMADE Energy diffusion

  8. Energy Diffusion: heat equation Non-stationary behavior We would like to prove that G ( i / N ) e i ( N 2 t ) � N →∞ ∫ G ( y ) u ( t , y ) dy N ∑ 1 → i with u ( t , y ) solution of the nonlinear heat equation: ∂ t u = ∂ y D ( u ) ∂ y u with the thermal conductivity defined by the Green-Kubo formula : D ( u ) = χ − 1 ⟨  i , i + 1 ( t )  0 , 1 ( 0 )⟩ β dt , β = β ( u ) ∞ β ∑ i ∈ Z ∫ 0 S. Olla - CEREMADE Energy diffusion

  9. Energy Diffusion: heat equation Non-stationary behavior We would like to prove that 1 N ∑ G ( i / N ) e i ( N 2 t ) � N →∞ ∫ G ( y ) u ( t , y ) dy → i with u ( t , y ) solution of the nonlinear heat equation: ∂ t u = ∂ y D( u ) ∂ y u with the thermal conductivity defined by the Green-Kubo formula : D( u ) = χ − 1 ∞ ⟨  i , i + 1 ( t )  0 , 1 ( 0 )⟩ β dt , β = β ( u ) β ∑ i ∈ Z ∫ 0 Not clear under which initial conditions such limit would be true S. Olla - CEREMADE Energy diffusion

  10. Energy Diffusion: heat equation Equilibrium Fluctuations: Linear response Here is a theorem that has a clear and precise mathematical statement: S. Olla - CEREMADE Energy diffusion

  11. Energy Diffusion: heat equation Equilibrium Fluctuations: Linear response Here is a theorem that has a clear and precise mathematical statement: Consider the system in equilibrium at temperature T = β − 1 , and perturbe it at time 0 in atom 0 by adding some energy there: S. Olla - CEREMADE Energy diffusion

  12. Energy Diffusion: heat equation Equilibrium Fluctuations: Linear response Here is a theorem that has a clear and precise mathematical statement: Consider the system in equilibrium at temperature T = β − 1 , and perturbe it at time 0 in atom 0 by adding some energy there: so we start with the measure β = e 0 dQ ′ < e 0 > β dQ β We want to study the time evolution of β, t = < e i ( t ) e 0 ( 0 ) > < e i ( t ) > Q ′ β = ∫ e i dQ ′ < e 0 > S. Olla - CEREMADE Energy diffusion

  13. Energy Diffusion: heat equation Linear response Assuming that the corresponding limits exist, we have that β 2 χ ( β ) = < e 0 > β i 2 < e i ( t ) > Q ′ D = 1 κ t ∑ χ ( β ) lim t →∞ β i ∈ Z with χ ( β ) = ∑ i (< e i e 0 > β − < e i > β < e 0 > β ) . S. Olla - CEREMADE Energy diffusion

  14. Energy Diffusion: heat equation Linear response Assuming that the corresponding limits exist, we have that β 2 χ ( β ) = < e 0 > β i 2 < e i ( t ) > Q ′ D = 1 κ t ∑ χ ( β ) lim t →∞ β i ∈ Z with χ ( β ) = ∑ i (< e i e 0 > β − < e i > β < e 0 > β ) . In fact, using stationarity and translation invariance i 2 < e i ( t ) > Q ′ i 2 < ( e i ( t ) − e i ( 0 )) e i ( 0 ) > β < e 0 > β ∑ β = ∑ i ∈ Z i ∈ Z = 2 ∫ 0 ds ∫ t 0 d τ ∑ s ⟨  i , i + 1 ( s − τ )  0 , 1 ( 0 )⟩ i � ∞ ⟨  i , i + 1 ( s )  0 , 1 ( 0 )⟩ ds ∑ t →∞ 2 ∫ → 0 i S. Olla - CEREMADE Energy diffusion

  15. Energy Diffusion: heat equation Linearized heat equation Define C ( i , j , t ) =< e i ( t ) e j ( 0 ) > β − ¯ e 2 S. Olla - CEREMADE Energy diffusion

  16. Energy Diffusion: heat equation Linearized heat equation Define C ( i , j , t ) =< e i ( t ) e j ( 0 ) > β − ¯ e 2 Conjecture: N →∞ ( 2 π D) − 1 / 2 exp (−( x − y ) 2 NC ([ Nx ] , [ Ny ] , N 2 t ) � ) → 2 t D S. Olla - CEREMADE Energy diffusion

  17. Energy Diffusion: heat equation Linearized heat equation Define C ( i , j , t ) =< e i ( t ) e j ( 0 ) > β − ¯ e 2 Conjecture: N →∞ ( 2 π D) − 1 / 2 exp (−( x − y ) 2 NC ([ Nx ] , [ Ny ] , N 2 t ) � ) → 2 t D i.e. the limit follows the linearized heat equation ∂ t C = D ∂ xx C S. Olla - CEREMADE Energy diffusion

  18. Energy Diffusion: heat equation Linearized heat equation Define C ( i , j , t ) =< e i ( t ) e j ( 0 ) > β − ¯ e 2 Conjecture: N →∞ ( 2 π D) − 1 / 2 exp (−( x − y ) 2 NC ([ Nx ] , [ Ny ] , N 2 t ) � ) → 2 t D i.e. the limit follows the linearized heat equation ∂ t C = D ∂ xx C this is more challenging than proving existence for D . S. Olla - CEREMADE Energy diffusion

  19. Energy Diffusion: heat equation How to prove this? Define, for a good choice of a sequence of smooth local functions F n Φ n =  0 , 1 − D( e 1 − e 0 ) − L F n with L the generator of the dynamics, S. Olla - CEREMADE Energy diffusion

  20. Energy Diffusion: heat equation How to prove this? Define, for a good choice of a sequence of smooth local functions F n Φ n =  0 , 1 − D( e 1 − e 0 ) − L F n with L the generator of the dynamics, and pick a nice test function G ( x ) : G ( i N ) F ( j N )[ C ( i , j , N 2 t ) − C ( i , j , 0 )] N ∑ 1 i , j G ( i N ) F ( j N )⟨( e i ( N 2 t ) − e i ( 0 )) e j ( 0 )⟩ = 1 N ∑ i , j S. Olla - CEREMADE Energy diffusion

  21. Energy Diffusion: heat equation How to prove this? Define, for a good choice of a sequence of smooth local functions F n Φ n =  0 , 1 − D( e 1 − e 0 ) − L F n with L the generator of the dynamics, and pick a nice test function G ( x ) : G ( i N ) F ( j N )[ C ( i , j , N 2 t ) − C ( i , j , 0 )] N ∑ 1 i , j G ( i N ) F ( j N )⟨( e i ( N 2 t ) − e i ( 0 )) e j ( 0 )⟩ = 1 N ∑ i , j = ∫ ∇ G ( i N ) F ( j N )⟨  i , i + 1 ( N 2 s ) e j ( 0 )⟩ ds 0 ∑ t i , j S. Olla - CEREMADE Energy diffusion

  22. Energy Diffusion: heat equation ∆ G ( i N ) F ( j N )D ⟨ e i ( N 2 s ) e j ( 0 )⟩ ds t N ∑ = ∫ 1 0 i , j + ∫ N 2 ∑ ∇ G ( i N ) F ( j N )⟨( N 2 L ) τ i F n ( N 2 s ) e j ( 0 )⟩ ds t 1 0 i , j + ∫ ∇ G ( i N ) F ( j N )⟨ τ i Φ n ( N 2 s ) e j ( 0 )⟩ ds 0 ∑ t i , j S. Olla - CEREMADE Energy diffusion

  23. Energy Diffusion: heat equation ∆ G ( i N ) F ( j N )D ⟨ e i ( N 2 s ) e j ( 0 )⟩ ds t N ∑ = ∫ 1 0 i , j + ∫ N 2 ∑ ∇ G ( i N ) F ( j N )⟨( N 2 L ) τ i F n ( N 2 s ) e j ( 0 )⟩ ds t 1 0 i , j + ∫ ∇ G ( i N ) F ( j N )⟨ τ i Φ n ( N 2 s ) e j ( 0 )⟩ ds 0 ∑ t i , j ∆ G ( i N ) F ( j N )D NC ( i , j , N 2 t ) ds ∼ ∫ t N 2 ∑ 1 0 i , j + 1 ∇ G ( i N ) F ( j N )⟨ τ i (F n ( N 2 t ) − F n ( 0 )) e j ( 0 )⟩ ds N 2 ∑ i , j + ∫ F ( j N )∇ G ( i N )⟨ 1 τ l Φ n ( N 2 s ) e j ( 0 )⟩ ds 0 ∑ t ∑ 2 k i , j ∣ i − l ∣≤ k S. Olla - CEREMADE Energy diffusion

  24. Energy Diffusion: heat equation Φ n =  0 , 1 − D( e 1 − e 0 ) − LF n 2 k ∑ Φ n , k = 1 ˆ τ j Φ n ∣ j ∣≤ k By Schwarz we can bound the square of the last term by e 2 ⟨(∫ G ′ ( i 2 ∥ F ∥ 2 ¯ 0 N ∑ N ) τ i ˆ Φ n , k ( N 2 s ) ds ) ⟩ t i G ′ ( i 2 = C ⟨(∫ N 2 t N ) τ i ˆ Φ n , k ( s ) ds ) ⟩ N ∑ 1 0 i S. Olla - CEREMADE Energy diffusion

  25. Energy Diffusion: heat equation Φ n =  0 , 1 − D( e 1 − e 0 ) − LF n 2 k ∑ Φ n , k = 1 ˆ τ j Φ n ∣ j ∣≤ k By Schwarz we can bound the square of the last term by e 2 ⟨(∫ G ′ ( i 2 ∥ F ∥ 2 ¯ 0 N ∑ N ) τ i ˆ Φ n , k ( N 2 s ) ds ) ⟩ t i G ′ ( i 2 = C ⟨(∫ N 2 t N ) τ i ˆ Φ n , k ( s ) ds ) ⟩ N ∑ 1 0 i We are left to prove that this is negligeable as N → ∞ , k → ∞ and n → ∞ . S. Olla - CEREMADE Energy diffusion

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend