emission signatures of a young protostellar object
play

Emission Signatures of a Young Protostellar Object M. Yamada(ASIAA) - PowerPoint PPT Presentation

Emission Signatures of a Young Protostellar Object M. Yamada(ASIAA) M.N. Machida(NAOJ) S. Inutsuka(Nagoya-U.), K. Tomisaka Y. Kurono(NAOJ) I)magnetic flux problem II)morphology variance by diffusivity III)LTR(observational


  1. Emission Signatures of a Young Protostellar Object M. Yamada(ASIAA) 、 M.N. Machida(NAOJ) 、 S. Inutsuka(Nagoya-U.), K. Tomisaka 、 Y. Kurono(NAOJ) I)magnetic flux problem II)morphology variance by diffusivity III)LTR(observational visualization) IV)pseudo-observation towards ALMA 1 2010 年 3 月 2 日火曜日 1

  2. Introduction: Early Stage of Star Formation ✦ Unresolved problems in (low-mass) Star Formation: 1) angular-momentum problem J core >>J * ⇒ outflow launching that transfers J away 2) magnetic flux problem Φ core >> Φ * : how/when “extra” Φ B decreases by a factor of 10 4 -10 5 ? 3) ... and so on ✦ Low-mass star formation site: center of the parent molecular core observational study of earliest stages of star formation ✦ evolution time scale~free fall time: rapid evolution at the central region ( ρ ∝ r -2 ) ✦ ⇒ need to probe the emission embedded in an infalling envelope ✦ 3D MHD model + line transfer simulation Which line is the plausible tracer? How ALMA can reveal these problems realistically? 2 2010 年 3 月 2 日火曜日 2

  3. Calculations: hydro. evolution 1D Radiative Hydrodynamics Larson (1969) Protostar Tohline (1982) Masunaga & Inutsuka (2000) Log T (K) Adiabatic Phase Second Collapse & Isothermal Phase Protostellar Phases To MS 10 4 Dead region B amplification B amplification B dissipation (10 12 cm -3 <n<10 15 cm -3 ) protostar (second core) 10 3 H 2 dissociation B B B (endoergic reaction) Molecular Cloud Core 10 2 Adiabatic core (First core) Formation 10 Gas Temperature Log n (cm -3 ) 10 5 10 10 10 15 10 20 3 Spatial Scale (AU) 10 4 100 1 0.1 2010 年 3 月 2 日火曜日 3

  4. Magnetic Field in Star Formation ✦ “Magnetic flux problem” Φ core >> Φ * stellar magnetic flux is ~10 -4 ~10 -5 compared with the parent core ✦ How & where has φ B dissipated? dissipation: ambipolar diffusion, Ohmic dissipation ->dynamical evolution ✦ resistive MHD study: rapid diss. at the formation of outflows from the first core ✦ Machida et al.2006+ ideal MHD ohmic dissipation phase parameterize C η ・ η resistive MHD (Nakano et al. 2002) Can we observationally examine these expected 11 differences in morphology? 2010 年 3 月 2 日火曜日 4

  5. Calculations ✦ Hydrodynamic simulations: 3D nest grid, resistive MHD ✦ initial condition: rotating Bonnor-Ebert sphere ✦ (M= 0.3Mo , R=2000AU, T kin =10K) EOS : taken from 1D radiation hydro. simulation ✦ (Masunaga & Inutsuka, 2000) + some modification long evolution, and large spatial extent ✦ 500AU stop calculations slightly after the first core ✦ formation ✦ Radiative Transfer: [ray tracing with long characteristics method] non-LTE level population up to J=16 for each grid ✦ assume uniform chemical abundance distribution ✦ abs. coeffs. profile : ✦ purely thermal velocity, no micro-turbulence HCO + HCN SiO n crit ~10 5 [1/cc] ~10 5 [1/cc] ~10 5 [1/cc] 13 E 10 4.2K 4.1K 2.08K Hogerheijde&van der Tak(2000) 2010 年 3 月 2 日火曜日 5

  6. Morphology variations with eta C η =1 C η =0 (ideal) (a) (b) 12.80 12.80 200 200 11.80 11.80 log 10 n [cm -3 ] log 10 n [cm -3 ] 100 100 10.80 10.80 z[AU] z[AU] outflow 0 0 9.80 9.80 8.80 8.80 -100 -100 7.80 7.80 -200 -200 6.80 6.80 -200 -100 0 100 200 -200 -100 0 100 200 C η =10 x[AU] x[AU] C η =100 (c) (d) 12.80 12.80 200 200 11.80 11.80 log 10 n [cm -3 ] log 10 n [cm -3 ] 100 100 10.80 10.80 z[AU] z[AU] 0 0 9.80 9.80 Strong B 8.80 8.80 -100 -100 7.80 7.80 -200 -200 Wide Opening Angle 6.80 6.80 -200 -100 0 100 200 -200 -100 0 100 200 x[AU] x[AU] ✦ density distribution - “hole” near the first core (launching point) for η >0 cases 14 B-field dissipation at the center -> launching point of the magneto-centrifugal force ✦ goes OUTWARD 2010 年 3 月 2 日火曜日 6

  7. Results: integrated intensity(I) H 13 CO + (4-3), y=2x10 -10 C η =1 C η =0 (ideal) (a) (b) 32.0 32.0 200 26.7 26.7 200 I [K km sec -1 ] I [K km sec -1 ] 21.3 21.3 100 100 z[AU] z[AU] 16.0 16.0 0 0 10.7 10.7 -100 -100 5.3 5.3 -200 -200 0.0 0.0 -200 -100 0 100 200 -200 -100 0 100 200 C η =10 C η =100 x[AU] x[AU] (c) (d) 32.0 32.0 200 26.7 200 26.7 ✦ required I [K km sec -1 ] I [K km sec -1 ] 21.3 21.3 100 100 resolution z[AU] z[AU] 16.0 16.0 0 0 ~10AU@140pc 10.7 10.7 -100 -100 = 0.07”: 5.3 5.3 resolvable -200 -200 0.0 0.0 -200 -100 0 100 200 -200 -100 0 100 200 x[AU] x[AU] ✦ Integrated intensity distributions show differences in the widths of “cavities” of outflows 15 B-field dissipation at the center -> launching point of the magneto-centrifugal force ✦ goes OUTWARD 2010 年 3 月 2 日火曜日 7

  8. Results: integrated intensity(II) H 13 CO + (4-3), y=2x10 -10 , θ =30deg C η =0 (ideal) C η =0.1 C η =1 (a) (b) (c) 32.0 32.0 32.0 200 200 200 26.7 26.7 26.7 I [K km sec -1 ] I [K km sec -1 ] I [K km sec -1 ] 100 100 100 21.3 21.3 21.3 z[AU] z[AU] z[AU] 0 0 0 16.0 16.0 16.0 10.7 10.7 10.7 -100 -100 -100 5.3 5.3 5.3 -200 -200 -200 0.0 0.0 0.0 -200 -100 0 100 200 -200 -100 0 100 200 -200 -100 0 100 200 x[AU] x[AU] x[AU] ✦ pole-on ~ close-to-pole-on views show morphology differences due to η filled cone ( η =0) ⇔ “empty” cone ( η ≠ 0) ✦ Strong B significant difference in ideal/resistive MHD ✦ results Wide Opening Angle А 16 η =0 η ≠ 0 2010 年 3 月 2 日火曜日 8

  9. 磁気遠心力風モデル Eta effects in Vel. channel maps eta=0(ideal MHD) eta=1 Wider opening outflows from outer launching ✦ loci form “cavity” structure in (x, y, v) space Strong B -> appears as arm-like structures in nearly 17 pole-on view Wide Opening Angle 2010 年 3 月 2 日火曜日 9

  10. Results: opacity of surrounding envelope C η =1 H 13 CO + (4-3), y=2x10 -10 C η =0 (ideal) n crit (4-3)~10 6 -10 7 cm -3 ⇔ 10 6 cm -3 <n<10 12 cm -3 in this C η =10 snapshot, +n ∝ r -2 C η =100 ⇒ T ex and τ are smaller in outer part l=8 ( Δ L~400AU) ✦ < τ > in the comp. domain is reasonably small for H 13 CO + (4-3) line H 13 CO + (4-3)@356GHz → falls in the band of the receiver on ALMA (Band 8) ✦ 18 < τ > in the larger grid ~ < τ > of the envelope < 10 : OBSERVABLE!! ✦ 2010 年 3 月 2 日火曜日 10

  11. Other observable indications? strong 4.20 60 coll. 2.80 40 R out 20 1.40 Vz [km s -1 ] y[AU] 0 0.00 -20 -1.40 Z out -40 -2.80 -60 -4.20 -60 -40 -20 0 20 40 60 x[AU] outflow length ✦ Shift in launching point → evolution of aspect ratio of outflow width/ length easier than direct detection of relatively small differences in the launching points ✦ 19 from images 2010 年 3 月 2 日火曜日 11

  12. Pseudo-Observation in Computer ✦ line transfer simulation of YSO outflow ✦ rotation of magnetocentrifugal-force driven flow appears in velocity channel maps SiO(7-6), 30deg 2000AU 20 Yamada, Machida, Inutsuka & outflow axis Tomisaka, 2009 2010 年 3 月 2 日火曜日 12

  13. Pseudo-Observation in Computer Y.Kurono & MY, private comm. SMA ALMA @140pc, dec=-30 ✦ diffuse component from the geometrically thick protostellar disk: the total power array is inevitably necessary in ALMA obs. 21 exposure time: ~14 hours for SiO(7-6) @0.1”, 0.3K sensitivity w/ALMA ✦ 2010 年 3 月 2 日火曜日 13

  14. Summary ✦ We examined the emission signatures of very young objects w/ 3D MHD +nonLTE simulations magneto-centrifugal force driven flow: rotation of outflows appears as vel. grad./ ✦ velocity channel maps complicated velocity (rot, infall, outflow) ✦ ->complex morphology, a new criterion for identification of embedded outflows ✦ degree of resistivity shifts the launching point of the outflows “thickness” of the outflows (R out /Z out ) v.s. R out would be an indicator of eta ✦ ..or velocity moment map also helps rather than integrated intensity maps ✦ ✦ Opacity of surrounding envelope is quite severe ( ⇔ necessary to examine the VERY young stage) high-J lines having high n crit , or low abundance isotopologue mid-J lines could probe ✦ the compact & embedded signatures e.g., HCO + (7-6) (624GHz), H 13 CO +/ HC 18 O + (4-3) (356GHz) are good candidate ✦ ALMA can resolve the structure (at least in nearby low-mass star formation regions) ✦ 22 required observational time - ~8 hours(0.07”) for J=4-3, & ~40 hours for J=7-6 lines ✦ 2010 年 3 月 2 日火曜日 14

  15. 23 Excitation Temperature: CO adopt “standard” mol. ✦ 12 abundance y=3x10 -4 10 8 n crit (1-0)~10 2 cm -3 , n crit ∝ J 3 ✦ 6 4 J=1-0 J=2-1 J=3-2 J=1-0 J=2-1 J=3-2 huge optical thickness ( τ 0 up ✦ 1-0 2-1 3-2 2 to 4,000) and high density 0 12 (10 6 cm -3 < n < 10 11 cm -3 ) in the T ex [K] T ex [K] 10 simulation box, pop. energy 8 distribution becomes LTE 6 even at high J (J=10-9) J=4-3 J=5-4 J=6-5 4 (T ex = T kin ~10K) J=4-3 J=5-4 J=6-5 4-3 5-4 6-5 2 0 12 coll. dominant: 10 CO, 13 CO, C 18 O are 8 J=7-6 J=8-7 J=9-8 6 improper tracers for 4 young objects J=7-6 J=8-7 J=9-8 7-6 8-7 9-8 n[cm -3 ] 2 0 10 6 10 7 10 8 10 9 10 10 10 6 10 7 10 8 10 9 10 10 10 6 10 7 10 8 10 9 10 10 10 11 10 11 10 11 n[cm -3 ] 2010 年 3 月 2 日火曜日 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend