embedded contact homology of prequantization bundles
play

Embedded Contact Homology of Prequantization Bundles Jo Nelson - PowerPoint PPT Presentation

Embedded Contact Homology of Prequantization Bundles Jo Nelson & Morgan Weiler Rice University WHVSS, May 2020 https://math.rice.edu/~jkn3/WHVSS-slides.pdf Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles


  1. Embedded Contact Homology of Prequantization Bundles Jo Nelson & Morgan Weiler Rice University WHVSS, May 2020 https://math.rice.edu/~jkn3/WHVSS-slides.pdf Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles

  2. Contact structures Definition A contact structure is a maximally nonintegrable hyperplane field. ξ = ker( dz − ydx ) Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles

  3. Contact structures Definition A contact structure is a maximally nonintegrable hyperplane field. ξ = ker( dz − ydx ) The kernel of a 1-form λ on Y 2 n − 1 is a contact structure whenever λ ∧ ( d λ ) n − 1 is a volume form ⇔ d λ | ξ is nondegenerate. Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles

  4. Reeb vector fields Definition The Reeb vector field R on ( Y , λ ) is uniquely determined by λ ( R ) = 1 , d λ ( R , · ) = 0. The Reeb flow , ϕ t : Y → Y is defined by d dt ϕ t ( x ) = R ( ϕ t ( x )). A closed Reeb orbit (modulo reparametrization) satisfies γ : R / T Z → Y , γ ( t ) = R ( γ ( t )) , ˙ (0.1) and is embedded whenever ( ?? ) is injective. Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles

  5. Reeb orbits Given an embedded Reeb orbit γ : R / T Z → Y , the linearized flow along γ defines a symplectic linear map d ϕ t : ( ξ | γ (0) , d λ ) → ( ξ | γ ( t ) , d λ ) d ϕ T is called the linearized return map . If 1 is not an eigenvalue of d ϕ T then γ is nondegenerate . Nondegenerate orbits are either elliptic or hyperbolic according to whether d ϕ T has eigenvalues on S 1 or real eigenvalues. λ is nondegenerate if all Reeb orbits associated to λ are nondegenerate. Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles

  6. Reeb orbits on S 3 S 3 := { ( u , v ) ∈ C 2 | | u | 2 + | v | 2 = 1 } , λ = i 2 ( ud ¯ u − ¯ udu + vd ¯ v − ¯ vdv ) . The orbits of the Reeb vector field form the Hopf fibration! R = iu ∂ u ∂ u + iv ∂ v ∂ ∂ u − i ¯ ∂ v − i ¯ v = ( iu , iv ) . ∂ ¯ ∂ ¯ The flow is ϕ t ( u , v ) = ( e it u , e it v ). Niles Johnson, S 3 / S 1 = S 2 Patrick Massot Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles

  7. A video of the Hopf fibration Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles

  8. Prequantization bundles Theorem (Boothby-Wang construction ’58) Let (Σ g , ω ) be a Riemann surface and e a negative class in H 2 (Σ g ; Z ) . Let p : Y → Σ g be the principal S 1 -bundle with Euler class e. Then there is a connection 1-form λ on Y whose Reeb vector field R is tangent to the S 1 -action. ( Y , λ ) is the prequantization bundle over (Σ g , ω ). The Reeb orbits of R are the S 1 -fibers of this bundle. The Reeb orbits of R are degenerate. d λ = p ∗ ω p ∗ ξ = T Σ g Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles

  9. Perturbed Reeb dynamics of prequantization bundles Use a Morse-Smale H : Σ → R , | H | C 2 < 1 to perturb λ : λ ε := (1 + ε p ∗ H ) λ The perturbed Reeb vector field is ε ˜ R X H R ε = 1 + ε p ∗ H + (1 + ε p ∗ H ) 2 where ˜ X H is the horizontal lift of X H to ξ . If p ∈ Crit( H ) then X H ( p ) = 0. The action of a closed orbit γ is A ( γ ) := � γ λ ε . Fix L > 0. ∃ ε > 0 such that if γ is an orbit of R ǫ and if A ( γ ) < L then γ is nondegenerate and projects to p ∈ Crit( H ); if A ( γ ) > L then γ loops around the tori above the orbits of X H , or is a larger iterate of a fiber above p ∈ Crit( H ). Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles

  10. Fiber orbits of prequantization bundles Recall ε ˜ R X H R ε = 1 + ε p ∗ H + (1 + ε p ∗ H ) 2 Denote the k -fold cover projecting to p ∈ Crit( H ) by γ k p . We have p ) = RS τ (fiber k ) − dim(Σ) CZ τ ( γ k + ind p ( H ) . 2 Using the constant trivialization of ξ = p ∗ T Σ, RS τ (fiber k ) = 0. Thus CZ τ ( γ k p ) = ind p ( H ) − 1 . Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles

  11. Fiber orbits of prequantization bundles Recall CZ τ ( γ k p ) = ind p ( H ) − 1 Only positive hyperbolic orbits have even CZ . If ind p ( H ) = 1 then γ p is positive hyperbolic. Since p is a bundle, all linearized return maps are close to Id . Hence no negative hyperbolic orbits. If ind p ( H ) = 0 , 2 then γ p is elliptic. Assume H is perfect. Denote the index zero elliptic orbit by e − the index two elliptic orbit by e + , the hyperbolic orbits by h 1 , . . . , h 2 g . Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles

  12. Embedded contact homology Embedded contact homology (ECH) is a Floer theory for closed ( Y 3 , λ ) and Γ ∈ H 1 ( Y ; Z ). For nondegenerate λ , the chain complex ECC ∗ ( Y , λ, Γ , J ) is generated as a Z 2 vector space by orbit sets α = { ( α i , m i ) } , which are finite sets for which: α i is an embedded Reeb orbit m i ∈ Z > 0 � i m i [ α i ] = Γ If α i is hyperbolic, m i = 1. The grading ∗ comes from the relative ECH index I ( α, β ), a combination of c 1 (ker λ ), CZ ( α k i ), CZ ( β k j ), and the relative self-intersection. Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles

  13. Almost complex structures and ∂ ECH A λ -compatible almost complex structure is a complex structure J on T ( R × Y ), for which: J is R -invariant J ξ = ξ , positively with respect to d λ J ( ∂ s ) = R , where s denotes the R coordinate � ∂ ECH α, β � counts currents , disjoint unions of J -holomorphic curves u : ( ˙ Σ , j ) → ( R × Y , J ) , du ◦ j = J ◦ du which are asymptotically cylindrical to orbit sets α and β at ±∞ . For generic J, ECH index one yields somewhere injective. -Hutchings’ Haiku Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles

  14. Embedded contact homology differential ∂ ECH Theorem (Hutchings-Taubes ’09) ∂ ECH � 2 = 0 , so ( ECC ∗ ( Y , λ, Γ , J ) , ∂ ECH ) is a chain complex. � Theorem (Taubes, Kutluhan-Lee-Taubes, Colin-Ghiggini-Honda) The homology depends only on ( Y , ker λ, Γ) . We denote the homology by ECH ∗ ( Y , ker λ, Γ). Dee squared is zero; obstruction bundle gluing is complicated. -Hutchings-Taubes’ Haiku Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles

  15. ECH from H ∗ Theorem (Nelson-Weiler, 90%) Let ( Y , ξ = ker λ ) be a prequantization bundle over (Σ g , ω ) . Then � ECH ∗ ( Y , ξ, Γ) ∼ = Z 2 Λ ∗ H ∗ (Σ g ; Z 2 ) Γ ∈ H 1 ( Y ; Z ) Inspired by the 2011 PhD thesis of Farris. 1 The critical points of a perfect H form a basis for H ∗ (Σ g ; Z 2 ). 1 · · · h m 2 g The generators of ECH are of the form e m − 2 g e m + − h m 1 + where m i = 0 , 1, so correspond to a basis for Λ ∗ H ∗ (Σ g ; Z 2 ). 2 We will prove ∂ ECH only counts cylinders corresponding to Morse flows on Σ g , therefore ∂ ECH ( e m − 1 · · · h m 2 g 2 g e m + − h m 1 + ) is a sum over all ways to apply ∂ Morse to h i or e + . Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles

  16. Our favorite fibration on S 3 Example ( S 3 , λ ) The ECH of S 3 is the Z 2 -vector space generated by terms e m − − e m + + , where | e − | = 2 , | e + | = 4 . Note that ∗ is not the grading on Λ ∗ H ∗ (Σ g ; Z 2 ) , since | e 2 − | = 6 . fiber: e + The fibers above the critical points of the height function on S 2 represent e ± . We have ∂ ECH = 0 because ∂ Morse = 0. fiber: e − Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles

  17. Lens spaces L ( k , 1) L ( k , 1) is the total space of the prequantization bundle with Euler number − k on S 2 . Corollary (Nelson-Weiler, 95%) With its prequantization contact structure ξ k ,   if ∗ ∈ 2 Z ≥ 0 Z 2  ECH ∗ ( L ( k , 1) , ξ k , Γ) ∼ =  0 else  for all Γ ∈ H 1 ( L ( k , 1); Z ) . Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles

  18. Finer points of the isomorphism Fix a negative Euler class e . For Γ ∈ { 0 , . . . , − e − 1 } , � Λ Γ − ne ( H ∗ (Σ g ; Z 2 )) ECH ∗ ( Y , ξ, Γ) = n ∈ Z ≥ 0 Proposition (Nelson-Weiler) Let α = e m − 1 · · · h m 2 g and let β = e n − 1 · · · h n 2 g − h m 1 2 g e m + − h n 1 2 g e n + + . + j n j and m = ( m − + m + + � i m i ) − N Let N = n − + n + + � . Then − e I ( α, β ) = (2 − 2 g ) m − m 2 e + 2 mN + m + − m − − n + + n − Using this formula, we obtain I ( e N + e , e N − ) = 2 g − 2 + Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles

  19. ECH ∗ ( Y , ξ, 0) for g = 2 , e = − 1 Recall I ( e N + e , e N − ) = 2 g − 2. Set ∗ ( α ) = I ( α, ∅ ). + ∗ = − 2 ∗ = − 1 ∗ = 0 ∗ = 1 ∗ = 2 ∗ = 3 ∗ = 4 Λ 0 ∅ Λ 1 e − h i e + Λ 2 e 2 e 2 e − h i e − e + h i e + + − h i h j Λ 3 e 3 e 2 e 2 e − e 2 − h i − e + e − h i e + · · · + − e − h i h j h i h j h k h i h j e + Λ 4 e 4 · · · − Jo Nelson & Morgan Weiler Embedded Contact Homology of Prequantization Bundles

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend