an introduction to link homology
play

An introduction to link homology Marco Mackaay CAMGSD and - PowerPoint PPT Presentation

History Link polynomials Link homologies An introduction to link homology Marco Mackaay CAMGSD and Universidade do Algarve 2 September, 2013 1/39 Marco Mackaay An introduction to link homology History Link polynomials Link homologies


  1. History Link polynomials Link homologies An introduction to link homology Marco Mackaay CAMGSD and Universidade do Algarve 2 September, 2013 1/39 Marco Mackaay An introduction to link homology

  2. History Link polynomials Link homologies Outline History 1 2/39 Marco Mackaay An introduction to link homology

  3. History Link polynomials Link homologies Outline History 1 Link polynomials 2 2/39 Marco Mackaay An introduction to link homology

  4. History Link polynomials Link homologies Outline History 1 Link polynomials 2 Link homologies 3 Khovanov link homology sl ( 3 ) link homology sl ( N ) link homology 2/39 Marco Mackaay An introduction to link homology

  5. History Link polynomials Link homologies Section outline History 1 Link polynomials 2 Link homologies 3 Khovanov link homology sl ( 3 ) link homology sl ( N ) link homology 3/39 Marco Mackaay An introduction to link homology

  6. History Link polynomials Link homologies Link polynomials and homologies L − → P ( L ) polynomial ( Jones ’84 + HOMFLY-PT ’85)

  7. History Link polynomials Link homologies Link polynomials and homologies L − → P ( L ) polynomial ( Jones ’84 + HOMFLY-PT ’85) L − → H ( L ) homology ( Khovanov ’99 + Khovanov-Rozansky ’04 ) 4/39 Marco Mackaay An introduction to link homology

  8. History Link polynomials Link homologies Link polynomials and homologies L − → P ( L ) polynomial ( Jones ’84 + HOMFLY-PT ’85) L − → H ( L ) homology ( Khovanov ’99 + Khovanov-Rozansky ’04 ) χ q � � H ( L ) = P ( L ) 4/39 Marco Mackaay An introduction to link homology

  9. History Link polynomials Link homologies Short history of foams sl ( 2 ) link homology 1 Khovanov (1999), Bar-Natan (2005), Clark-Morrison-Walker (2007) and Caprau (2007), Blanchet (2010) 5/39 Marco Mackaay An introduction to link homology

  10. History Link polynomials Link homologies Short history of foams sl ( 2 ) link homology 1 Khovanov (1999), Bar-Natan (2005), Clark-Morrison-Walker (2007) and Caprau (2007), Blanchet (2010) 5/39 Marco Mackaay An introduction to link homology

  11. History Link polynomials Link homologies Short history of foams sl ( 2 ) link homology 1 Khovanov (1999), Bar-Natan (2005), Clark-Morrison-Walker (2007) and Caprau (2007), Blanchet (2010) sl ( 3 ) link homologies using sl ( 3 ) -foams 2 Khovanov (2004), M.-Vaz (2007), Morrisson-Nieh (2008), Lauda-Queffelec-Rose (2012) 5/39 Marco Mackaay An introduction to link homology

  12. History Link polynomials Link homologies Short history of foams sl ( 2 ) link homology 1 Khovanov (1999), Bar-Natan (2005), Clark-Morrison-Walker (2007) and Caprau (2007), Blanchet (2010) sl ( 3 ) link homologies using sl ( 3 ) -foams 2 Khovanov (2004), M.-Vaz (2007), Morrisson-Nieh (2008), Lauda-Queffelec-Rose (2012) sl ( N ) ( N > 3 ) link homologies using foams 3 Khovanov-Rozansky (2004), M.-Stoˇ si´ c-Vaz (2007). 5/39 Marco Mackaay An introduction to link homology

  13. History Link polynomials Link homologies Section outline History 1 Link polynomials 2 Link homologies 3 Khovanov link homology sl ( 3 ) link homology sl ( N ) link homology 6/39 Marco Mackaay An introduction to link homology

  14. History Link polynomials Link homologies Reidemeister moves R1 R2 R3 7/39 Marco Mackaay An introduction to link homology

  15. � � History Link polynomials Link homologies The sl ( N ) -link polynomial Resolutions in MOY-webs (Murakami-Ohtsuki-Yamada) � � ����������� � � 1 � 0 � � � � � � � � ����������� � � � � � � � 0 � 1 � � � 8/39 Marco Mackaay An introduction to link homology

  16. History Link polynomials Link homologies � N � � Γ ⊔ Γ ′ � = � Γ �� Γ ′ � ��� = [ N ] , � � = , 2 = [ 2 ] = [ N − 1 ] = +[ N − 2 ] + = + 9/39 Marco Mackaay An introduction to link homology

  17. � � � � History Link polynomials Link homologies The Jones polynomial of the trefoil ( N = 2 ) q ( q + q − 1 ) q 2 ( q + q − 1 ) 2 2 1 100 110 � 3 + + � � � � � ( q + q − 1 ) 2 q ( q + q − 1 ) q 2 ( q + q − 1 ) 2 q 3 ( q + q − 1 ) 3 000 010 101 111 � � � + � + � � q ( q + q − 1 ) q 2 ( q + q − 1 ) 2 001 011 ( q + q − 1 ) 2 3 q ( q + q − 1 ) 3 q 2 ( q + q − 1 ) 2 q 3 ( q + q − 1 ) 3 − + − · ( − 1 ) n − qn + − 2 n − ( q + q − 1 ) − 1 = q − 2 + 1 + q 2 − q 6 − − − − − − − − − − − − − − − → J ( T )= q 2 + q 6 − q 8 . (with ( n + , n − ) = ( 3 , 0 ) ) 10/39 Marco Mackaay An introduction to link homology

  18. History Khovanov link homology Link polynomials sl ( 3 ) link homology Link homologies sl ( N ) link homology Section outline History 1 Link polynomials 2 Link homologies 3 Khovanov link homology sl ( 3 ) link homology sl ( N ) link homology 11/39 Marco Mackaay An introduction to link homology

  19. History Khovanov link homology Link polynomials sl ( 3 ) link homology Link homologies sl ( N ) link homology Khovanov link homology The main ideas Let A = Q [ X ] / ( X 2 ) , such that deg ( 1 ) = 0 and deg ( X ) = 2 . So qdim ( A {− 1 } ) = q + q − 1 . Associate to each resolution with s circles the vector space A ⊗ s { t } . Take direct sum over each column. Resolutions in consecutive columns can be obtained from one another by merging two circles into one or splitting one circle into two. Define a coproduct on A by 1 �→ 1 ⊗ X + X ⊗ 1 X �→ X ⊗ X . Use the product and coproduct in A to define differentials. 12/39 Marco Mackaay An introduction to link homology

  20. History Khovanov link homology Link polynomials sl ( 3 ) link homology Link homologies sl ( N ) link homology Khovanov homology of the trefoil 001 011 : 0*1 1− 2− 3− *01 *11 00* 01* 000 010 101 111 0*0 1*1 *10 11* 10* *00 100 110 1*0 13/39 Marco Mackaay An introduction to link homology

  21. History Khovanov link homology Link polynomials sl ( 3 ) link homology Link homologies sl ( N ) link homology Lemma A is a Frobenius algebra with trace ε ( 1 ) = 0 and ε ( X ) = 1 . 14/39 Marco Mackaay An introduction to link homology

  22. History Khovanov link homology Link polynomials sl ( 3 ) link homology Link homologies sl ( N ) link homology Lemma A is a Frobenius algebra with trace ε ( 1 ) = 0 and ε ( X ) = 1 . Lemma A defines a 2-dimensional TQFT, i.e. a monoidal functor Oriented surfaces → Vect . 14/39 Marco Mackaay An introduction to link homology

  23. History Khovanov link homology Link polynomials sl ( 3 ) link homology Link homologies sl ( N ) link homology Lemma A is a Frobenius algebra with trace ε ( 1 ) = 0 and ε ( X ) = 1 . Lemma A defines a 2-dimensional TQFT, i.e. a monoidal functor Oriented surfaces → Vect . Corollary We have d 2 = 0 . 14/39 Marco Mackaay An introduction to link homology

  24. History Khovanov link homology Link polynomials sl ( 3 ) link homology Link homologies sl ( N ) link homology Theorem (Khovanov) Khovanov’s complex is invariant up to homotopy equivalence under the Reidemeister moves. Thus the homology is a link invariant. 15/39 Marco Mackaay An introduction to link homology

  25. History Khovanov link homology Link polynomials sl ( 3 ) link homology Link homologies sl ( N ) link homology Theorem (Khovanov) Khovanov’s complex is invariant up to homotopy equivalence under the Reidemeister moves. Thus the homology is a link invariant. Question (Bar-Natan) What is the kernel of Khovanov’s TQFT? 15/39 Marco Mackaay An introduction to link homology

  26. History Khovanov link homology Link polynomials sl ( 3 ) link homology Link homologies sl ( N ) link homology Bar-Natan’s cobordisms Theorem (Bar-Natan) The kernel of Khovanov’s TQFT is generated by: ( 2 D ) : = 0 ( S ) : = 0 , = 1 � � � � � � ( NC ) : = + �� �� �� �� �� �� 16/39 Marco Mackaay An introduction to link homology

  27. � � � � � � � History Khovanov link homology Link polynomials sl ( 3 ) link homology Link homologies sl ( N ) link homology The first Reidemeister move � � d = : h = 1 i f 0 = ∑ g 0 = ( − 1 ) i 0 − 1 − i i = 0 � � 0 : 0 17/39 Marco Mackaay An introduction to link homology

  28. History Khovanov link homology Link polynomials sl ( 3 ) link homology Link homologies sl ( N ) link homology Recovering Khovanov homology from Bar-Natan’s cobordisms Let Cob /ℓ be the category of cobordisms modulo the Bar-Natan relations. A cobordism f has degree q ( f ) = − χ ( f )+ 2 d . 18/39 Marco Mackaay An introduction to link homology

  29. History Khovanov link homology Link polynomials sl ( 3 ) link homology Link homologies sl ( N ) link homology Recovering Khovanov homology from Bar-Natan’s cobordisms Let Cob /ℓ be the category of cobordisms modulo the Bar-Natan relations. A cobordism f has degree q ( f ) = − χ ( f )+ 2 d . Γ complete resolution: F ( Γ ) = Hom Cob /ℓ ( / 0 , Γ ) , F ( Γ ) graded 18/39 Marco Mackaay An introduction to link homology

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend