embeddability and universal equivalence of partially
play

Embeddability and universal equivalence of partially commutative - PowerPoint PPT Presentation

Embeddability and universal equivalence of partially commutative groups Montserrat Casals-Ruiz Marie Curie Postdoctoral Fellow University of Oxford GAGTA 2013 May 29, 2013 Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29,


  1. Embeddability and universal equivalence of partially commutative groups Montserrat Casals-Ruiz Marie Curie Postdoctoral Fellow University of Oxford GAGTA 2013 May 29, 2013 Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 1 / 16

  2. Partially commutative groups Definition Let Γ = ( V (Γ) , E (Γ)) be a (undirected) simplicial graph. The partially commutative group (pc group) G = G (Γ) defined by the commutation graph Γ is the group given by the following presentation, G = � V (Γ) | [ v 1 , v 2 ] = 1 , whenever ( v 1 , v 2 ) ∈ E (Γ) � . Remark Indeed, pc groups = right-angled Artin groups = graph groups =... Remark Dually, pc groups can be defined via its non-commutation graph Γ which is the complement of the commutation graph. Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 2 / 16

  3. Partially commutative groups Definition Let Γ = ( V (Γ) , E (Γ)) be a (undirected) simplicial graph. The partially commutative group (pc group) G = G (Γ) defined by the commutation graph Γ is the group given by the following presentation, G = � V (Γ) | [ v 1 , v 2 ] = 1 , whenever ( v 1 , v 2 ) ∈ E (Γ) � . Remark Indeed, pc groups = right-angled Artin groups = graph groups =... Remark Dually, pc groups can be defined via its non-commutation graph Γ which is the complement of the commutation graph. Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 2 / 16

  4. Partially commutative groups Definition Let Γ = ( V (Γ) , E (Γ)) be a (undirected) simplicial graph. The partially commutative group (pc group) G = G (Γ) defined by the commutation graph Γ is the group given by the following presentation, G = � V (Γ) | [ v 1 , v 2 ] = 1 , whenever ( v 1 , v 2 ) ∈ E (Γ) � . Remark Indeed, pc groups = right-angled Artin groups = graph groups =... Remark Dually, pc groups can be defined via its non-commutation graph Γ which is the complement of the commutation graph. Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 2 / 16

  5. Partially commutative groups Definition Let Γ = ( V (Γ) , E (Γ)) be a (undirected) simplicial graph. The partially commutative group (pc group) G = G (Γ) defined by the commutation graph Γ is the group given by the following presentation, G = � V (Γ) | [ v 1 , v 2 ] = 1 , whenever ( v 1 , v 2 ) ∈ E (Γ) � . Remark Indeed, pc groups = right-angled Artin groups = graph groups =... Remark Dually, pc groups can be defined via its non-commutation graph Γ which is the complement of the commutation graph. Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 2 / 16

  6. Examples Z 2 =!<!a,b!|![a,b]!>! a! b! a! b! ! ! ! !>! a! b! a! b! a! b! Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 3 / 16 a! d! ,d]!>! b! c! c! d! a! d! a! b! ,d]!>! c! d! c! b! b! d! a! c! a! b! e,a]>! e! e! d! c! d! b! a! b! c! d! e! ]>! a! e! c!

  7. Examples Z 2 =!<!a,b!|![a,b]!>! a! b! a! b! ! ! ! ! ! ! F 2 =!<!a,b|! ø !>! !>! a! a! b! b! a! a! b! b! ! ! a! b! a! b! a! d! a! d! ,d]!>! Montserrat Casals-Ruiz (Oxford) Embeddability ,d]!>! GAGTA 2013 May 29, 2013 3 / 16 b! c! b! c! c! c! d! d! a! d! a! d! a! b! a! b! ,d]!>! ,d]!>! c! d! c! d! c! b! c! b! d! b! d! b! a! c! a! b! a! c! a! b! e,a]>! e,a]>! c! e! e! d! e! e! d! c! d! b! d! b! a! b! c! d! e! b! ]>! a! c! d! e! ]>! a! e! a! e! c! c!

  8. Examples a! b! a! d! F 2 ! x! F 2 =!<!a,b,c,d!|[a,b],[a,c],[b,d],![c,d]!>! b! c! c! d! a! d! a! b! ,d]!>! c! d! c! b! Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 3 / 16 d! b! a! c! a! b! e,a]>! c! e! e! d! d! b! a! b! c! d! e! ]>! a! e! c!

  9. Examples a! b! a! d! F 2 ! x! F 2 =!<!a,b,c,d!|[a,b],[a,c],[b,d],![c,d]!>! b! c! c! d! c! d! a! d! a! b! a! d! a! b! ,d]!>! Z 2! *!Z 2 =!<!a,b,c,d!|![a,b][c,d]!>! c! d! c! d! c! b! c! b! d! b! b! d! a! c! a! b! Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 3 / 16 e,a]>! a! b! a! c! e,a]>! c! e! e! d! e! e! d! c! d! b! d! b! a! b! c! d! e! ]>! a! b! c! d! e! ]>! a! e! a! e! c! c!

  10. Examples c! b! d! b! a! b! a! c! <!a,b,c,d,e!|![a,b],![b,c],![c,d],![d,e],![e,a]>! e! e! d! c! d! b! a! b! c! d! e! ]>! a! e! Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 3 / 16 c!

  11. Examples c! b! d! b! a! c! a! b! <!a,b,c,d,e!|![a,b],![b,c],![c,d],![d,e],![e,a]>! e! e! d! c! d! b! d! b! a! b! c! d! e! <!a,b,c,d,e!|![a,b],![b,c],![c,d],![d,e]>! a! b! c! d! e! ]>! a! e! a! e! c! c! Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 3 / 16

  12. Algebraic vs. graph properties Slogan Many algebraic properties of G = G (Γ) are determined by properties of its defining graph Γ . G is freely decomposable if and only if Γ is not connected. G is directly decomposable if and only if Γ is not connected. The centraliser of a generator v is generated by the star of v in Γ . (Droms 1987) G (Γ) ≃ G (∆) if and only if Γ ≃ ∆ . Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 4 / 16

  13. Algebraic vs. graph properties Slogan Many algebraic properties of G = G (Γ) are determined by properties of its defining graph Γ . G is freely decomposable if and only if Γ is not connected. G is directly decomposable if and only if Γ is not connected. The centraliser of a generator v is generated by the star of v in Γ . (Droms 1987) G (Γ) ≃ G (∆) if and only if Γ ≃ ∆ . Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 4 / 16

  14. Algebraic vs. graph properties Slogan Many algebraic properties of G = G (Γ) are determined by properties of its defining graph Γ . G is freely decomposable if and only if Γ is not connected. G is directly decomposable if and only if Γ is not connected. The centraliser of a generator v is generated by the star of v in Γ . (Droms 1987) G (Γ) ≃ G (∆) if and only if Γ ≃ ∆ . Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 4 / 16

  15. Algebraic vs. graph properties Slogan Many algebraic properties of G = G (Γ) are determined by properties of its defining graph Γ . G is freely decomposable if and only if Γ is not connected. G is directly decomposable if and only if Γ is not connected. The centraliser of a generator v is generated by the star of v in Γ . (Droms 1987) G (Γ) ≃ G (∆) if and only if Γ ≃ ∆ . Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 4 / 16

  16. Algebraic vs. graph properties Slogan Many algebraic properties of G = G (Γ) are determined by properties of its defining graph Γ . G is freely decomposable if and only if Γ is not connected. G is directly decomposable if and only if Γ is not connected. The centraliser of a generator v is generated by the star of v in Γ . (Droms 1987) G (Γ) ≃ G (∆) if and only if Γ ≃ ∆ . Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 4 / 16

  17. Embeddability between pc groups Question Can we characterise when G (∆) < G (Γ) ? Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 5 / 16

  18. Warm-up examples a! b! c! d! a! b! c! d! e! ! ! ! ! a! b! c! d! a! b! c! d! e! b d! a d! Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 6 / 16 c! b! b! a c! a! c! a! d! e c! f! e! e! d!

  19. Warm-up examples a! b! c! d! a! b! c! d! e! ! ! ! ! ! ! a! b! c! d! e! a! b! c! d! ! a! b! c! d! a! b! c! d! e! b d! ! a d! ! b d! a d! ! ! c! b! b! a c! Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 6 / 16 c! a! b! c! b! a! d! a c! a! c! e c! a! d! f! e! d! e! e c! f! e! e! d!

  20. Warm-up examples Paths(Kim-Koberda 2011) If F is a forest, then G ( F ) < G ( P 3 ) Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 6 / 16

  21. Warm-up examples ! ! c! b! b! ! a c! a! c! ! a! d! ! e c! f! e! d! ! e! ! Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 6 / 16

  22. Warm-up examples ! ! (" $ )! "! ! $! (" $ )! #! &! #! "! %! " $! "! $! (" $ )! %! & $! '! &! &! %! Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 6 / 16

  23. Warm-up examples Cycles (Kim-Koberda 2011) If C n is the cycle with n vertices, n ≥ 5, then G ( C n ) < G ( C 5 ) . Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 6 / 16

  24. Extension Graph Conjecture Definition Let Γ be a simplicial graph, V (Γ) = { a 1 , . . . , a k } . We define the extension graph Γ e to be the graph whose set of vertices V (Γ e ) are labelled by elements a w i , w ∈ G (Γ) and 1 w j the set of edges E (Γ e ) are pairs of different vertices ( a w i i , a j ) such that 2 w j [ a w i i , a j ] = 1 in G (Γ) . Montserrat Casals-Ruiz (Oxford) Embeddability GAGTA 2013 May 29, 2013 7 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend