ellipsoidal sets for static output feedback
play

Ellipsoidal Sets for Static Output-Feedback by Dimitri Peaucelle - PowerPoint PPT Presentation

IFAC World Congress July 21-26 2002, Barcelona Ellipsoidal Sets for Static Output-Feedback by Dimitri Peaucelle & Denis Arzelier & Regis Bertrand L aboratoire d A nalyse et d A rchitecture des S yst` emes du C.N.R.S. Toulouse,


  1. IFAC World Congress July 21-26 2002, Barcelona Ellipsoidal Sets for Static Output-Feedback by Dimitri Peaucelle & Denis Arzelier & Regis Bertrand L aboratoire d’ A nalyse et d’ A rchitecture des S yst` emes du C.N.R.S. Toulouse, FRANCE

  2. Motivation 1 � � � � h i Θ � ∆ � ∆ � ∆ ∆ � � � � � � � � � ∆ � � � � � Θ : � � � Σ � j ω � Σ � � h i Θ � ω Σ � j ω � � � � R � � � � � � � � � � Topological separation for robust analysis Ellipsoidal Sets for Static Output-Feedback

  3. Motivation 1-a � : for synthesis � � � � Σ � j ω � h i Θ � ω � Σ � j ω Σ � � � � R � � � � � � � � � � � Θ : � � � � � h i K Θ � � � � non-empty set � K � � � � � K � Ellipsoidal Sets for Static Output-Feedback

  4. Matrix ellipsoids 2 R n Ellipsoids of the vector space R n � n s.t. Z R n , radius r and geometry Z � � k Z k � 1. Centre x o � , � R n � � Z � � � x � x o � � x � x o � � r x : R m � p Matrix ellipsoids of R p � p and geometry Z R m � m s.t. Z R m � p , radius R � � � k Z k � 1. Centre K o � , � R m � p � � Z � � � K � K o � � K � K o � � R : K f X , Y , Z g -ellipsoid : definition � � � � � � � X Y � � h i � R m � p � � � K : � � Z � � K � � � � � � Y Z K � Ellipsoidal Sets for Static Output-Feedback

  5. Matrix ellipsoids 3 � , R � 1 Y ✪ Algebraic rules: K o � � Z � K o � ZK o � X . � 1 Y ✪ Non-emptiness condition : R � � � � YZ � X � � � YK � K � Y � � Z � X K ✪ LMI description : � � � � Z ZK ✪ f X , Y , Z g -ellipsoid : a compact convex set. � R � m q det ✪ VOL � f X , Y , Z g -ellipsoid � � � VOL � f� � , � g -ellipsoid � . � , � p � Z det Ellipsoidal Sets for Static Output-Feedback

  6. Static output-feedback 4 � � t � � Ax � t � � Bu � t � Σ x ˙ � � � � : Σ y � t � � Cx � t � � Du � t � Notations � K : � K � � u � t � � Ky � t � � Σ is stabilisable via static output-feedback Σ � K s.t. iff � K is stable. f X , Y , Z g -ellipsoid s.t.: iff there exist a Lyapunov matrix P and a non-empty � � � � � � � � � � � � � � � � � P � � � C D � X Y � C D � � � � � � � � � � � A B P � A B � � Y Z � � Ellipsoidal Sets for Static Output-Feedback

  7. Remarks 5 A set of control laws: � Px proves Σ � x � � x f X , Y , Z g -ellipsoid. V � K stability for any gain K in the The non-convex constraint � 1 Y � � LMIs � a non-linear constraint ( X � YZ � ). SOF stabilisability y R 1 � 1 : z � y 2 � � 1 et x Example for K x Ellipsoidal Sets for Static Output-Feedback

  8. Fragility and resilience 6 Definition : Let K o be a stabilising gain and ∆ � K an additive uncertainty. � ∆ K � ∆ � K s.t. Σ � ∆ K ✪ Fragile : � K o � is unstable. � � ∆ K � ∆ Σ � ∆ K ✪ Resilient : � K � K o � is stable. : � ✪ Quadratically resilient : � Px ) proves the resiliency. � x � � x A unique quadratic Lyapunov function ( V Ellipsoidal Sets for Static Output-Feedback

  9. Fragility and resilience 7 Corollaries ✪ ∆ � K : ellipsoidal matrix set centred at the origin. � 1 Y � non-linear constraint X � YZ � � � LMI constraint g -ellipsoid is quadratically resilient to ∆ K Z ∆ K � f X , Y , Z � R . centre K o of the ✪ ∆ � K : norm-bounded uncertainty. � ρ � Z � � non-linear constraint � YY � � X � � � � � LMI constraint g -ellipsoid is quadratically resilient to ∆ K ∆ K � ρ f X , Y , Z � centre K o of the � . ✪ ∆ δ � K : multiplicative uncertainty with radius ¯ � ¯ δ 2 � 1 Y � non-linear constraint X � � 1 � YZ � � � LMI constraint g -ellipsoid is quadratically resilient to ∆ � δ K o with j δ δ . � ¯ � f X , Y , Z j centre K o of the K Ellipsoidal Sets for Static Output-Feedback

  10. Bounded or dissipative specifications on K 8 Definition f X g -ellipsoid. Design a stabilising control law K that belongs to a given K , Y K , Z K � ρ K � K Example 1 : Find a control law with bounded gain ( K � ) � � K � Exemple 2 : Find a passive control law ( K � ) LMI constraint ν � � 0 � � � � � � � � X K Y K � X Y ν � � � � � � � Y K Z K Y Z � Ellipsoidal Sets for Static Output-Feedback

  11. Pole location 9 f X R , Y R , Z R g -stability The poles of Σ � K belong to an ellipsoidal region of the complex plane: � Y R � � Z R f s � � sY R � s � ss g C : X R � � Examples: half-planes, discs, sectors, parabolas... f X R , Y R , Z R g -stabilisability Static output-feedback � � � � � � � � � P � P � X � Y � C � D � X R Y R � � � � � � � � h i h i � � � � � � � � � � � � P � P � A � B � Y � � Z � � � � � � Y R Z R � non-linear constraint Ellipsoidal Sets for Static Output-Feedback

  12. Extensions to multi-objective synthesis 10 ∆ ∆ Λ ∋ Σ <γ {X ,Y ,Z }−stable <γ 3 R R R 2 <γ 1 ∋ K {X ,Y ,Z }−ellip. K K K ✪ An LMI constraint for each specification. ✪ A Lyapunov function for each specification. � 1 Y ✪ A unique non-linear constraint ( X � YZ � ) Ellipsoidal Sets for Static Output-Feedback

  13. Algorithms to solve non-linear matrix inequalities 11 ✪ SOF design has no convex formulation in the general case. ✪ Elimination based approach � LMIs � ( XY � � ) proved to be NP-hard [Fu & Luo 1997]. ✪ Heuristic algorithms such as coordinated-descent iterative resolutions of BMIs. ✪ Efficient sub-optimal first order algorithms: ✫ Cone complementarity algorithm [El Ghaoui & al 1997]. ✫ Alternation projection algorithm [Grigoriadis & Skelton 1996]. Ellipsoidal Sets for Static Output-Feedback

  14. Algorithms to solve non-linear matrix inequalities 12 Numerical experiments with cone complementarity algorithm δ 2 � ¯ � 1 Y ✪ Considered non-linear constraint: X � . � � 1 � YZ δ 2 � ¯ � ˆ � 1 Y � ˆ ✪ Linear relaxation: � � 1 � X X YZ X ✪ Algorithm designed for: ˆ � 1 Y � � YZ � . X � ¯ δ 2 � 1 Y ✪ Stopping criterium: X � � 1 � YZ � . Ellipsoidal Sets for Static Output-Feedback

  15. Algorithms to solve non-linear matrix inequalities 13 � h i R 2 � 1 . � SOF design such that K k 1 k 2 � Poles location ( Re � pˆ � � 0 � 15) Stability oles � � h i and resiliency bounded K (radius 10, center ). 10 10 and resiliency 18 1.3 1.2 1.2 16 16 1.1 14 1 1 δ = 0.5 k 12 12 δ=0.5 2 0.9 δ = 0.25 0.8 0.8 k 2 10 δ = 0 0.7 8 8 0.6 0.6 δ = 0.25 6 0.5 4 0.4 0.4 δ = 0 4 0.3 −0.55 −0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.4 −0.3 −0.2 2 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 1 2 3 0 k 1 k 1 Ellipsoidal Sets for Static Output-Feedback

  16. Conclusions and prospectives 14 ✪ New static output-feedback design based on the topological separation theory. ✪ No conservatism when compared to LMI analysis techniques. ✪ Encouraging numerical results. ✫ Develop new adapted algorithms. ✫ Extensions to other design problems. Ellipsoidal Sets for Static Output-Feedback

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend