elena graverini
play

Elena Graverini Particle Physics Seminar University of Birmingham - PowerPoint PPT Presentation

Elena Graverini Particle Physics Seminar University of Birmingham March 7, 2018 E. Graverini (Universitt Zrich) SHiP: Search for Hidden Particles 1/45 Search for Hidden Particles 1 / 45 Introduction 2/45 matter-antimatter


  1. Elena Graverini Particle Physics Seminar — University of Birmingham March 7, 2018 E. Graverini (Universität Zürich) SHiP: Search for Hidden Particles 1/45 Search for Hidden Particles 1 / 45

  2. Introduction 2/45 – matter-antimatter asymmetry – neutrino masses/mixing – dark matter – flavour anomalies... New physics? E. Graverini (Universität Zürich) SHiP: Search for Hidden Particles ATLAS SUSY Searches* - 95% CL Lower Limits ATLAS Preliminary Status: July 2015 √ s = 7, 8 TeV E miss √ s = 7 TeV √ s = 8 TeV Model e , µ, τ, γ Jets L dt [fb − 1 ] � Mass limit Reference T MSUGRA/CMSSM 0-3 e , µ /1-2 τ 2-10 jets/3 b Yes 20.3 ˜ q , ˜ g 1.8 TeV m( ˜ q )=m( ˜ g ) 1507.05525 q ˜ ˜ q , ˜ q → q ˜ χ 0 1 0 2-6 jets Yes 20.3 q ˜ 850 GeV m( ˜ χ 0 1 )=0 GeV, m( 1 st gen . ˜ q )=m( 2 nd gen . ˜ q ) 1405.7875 Inclusive Searches ˜ q ˜ q , ˜ q → q ˜ χ 0 1 (compressed) mono-jet 1-3 jets Yes 20.3 ˜ q 100-440 GeV m( ˜ q )-m( ˜ χ 0 1 ) < 10 GeV 1507.05525 χ 0 ˜ q ˜ q , ˜ q → q ( ℓℓ/ℓν/νν )˜ 1 2 e , µ (off- Z ) 2 jets Yes 20.3 ˜ q 780 GeV m( ˜ χ 0 1 )=0 GeV 1503.03290 ˜ g ˜ g , ˜ g → q ¯ q ˜ χ 0 0 2-6 jets Yes 20.3 g ˜ 1.33 TeV m( ˜ 1 )=0 GeV χ 0 1405.7875 χ ± 1 → qqW ± ˜ 1 χ 0 0-1 e , µ 2-6 jets χ 0 χ 0 ˜ g ˜ g , ˜ g → qq ˜ 1 Yes 20 g ˜ 1.26 TeV m( ˜ 1 ) < 300 GeV, m( ˜ χ ± )=0.5(m( ˜ 1 )+m( ˜ g )) 1507.05525 ˜ g ˜ g , ˜ g → qq ( ℓℓ/ℓν/νν )˜ χ 0 2 e , µ 0-3 jets - 20 ˜ g 1.32 TeV m( ˜ χ 0 1 ) = 0 GeV 1501.03555 GMSB ( ˜ 1 1-2 τ + 0-1 ℓ 0-2 jets 20.3 ˜ g tan β > 20 ℓ NLSP) Yes 1.6 TeV 1407.0603 GGM (bino NLSP) 2 γ - Yes 20.3 ˜ g 1.29 TeV c τ (NLSP) < 0.1 mm 1507.05493 GGM (higgsino-bino NLSP) γ 1 b Yes 20.3 ˜ g 1.3 TeV m( ˜ χ 0 1507.05493 1 ) < 900 GeV, c τ (NLSP) < 0.1 mm, µ< 0 GGM (higgsino-bino NLSP) γ 2 jets Yes 20.3 ˜ g 1.25 TeV m( ˜ χ 0 1 ) < 850 GeV, c τ (NLSP) < 0.1 mm, µ> 0 1507.05493 GGM (higgsino NLSP) 2 e , µ ( Z ) 2 jets Yes 20.3 ˜ g 850 GeV m(NLSP) > 430 GeV 1503.03290 F 1 / 2 scale G ) > 1 . 8 × 10 − 4 eV, m( ˜ Gravitino LSP 0 mono-jet Yes 20.3 865 GeV m( ˜ g ) = m( ˜ q ) = 1.5 TeV 1502.01518 3 rd gen. g med. ˜ g ˜ g , ˜ g → b ¯ b ˜ χ 0 0 3 b Yes 20.1 g ˜ 1.25 TeV m( ˜ χ 0 1 ) < 400 GeV 1407.0600 g → t ¯ t ˜ χ 0 1 0 7-10 jets Yes 20.3 g ˜ 1.1 TeV m( ˜ χ 0 1308.1841 g ˜ ˜ g , ˜ 1 1 ) < 350 GeV ˜ g ˜ g , ˜ g → t ¯ t ˜ χ 0 1 0-1 e , µ 3 b Yes 20.1 ˜ g 1.34 TeV m( ˜ 1 ) < 400 GeV χ 0 1407.0600 ˜ ˜ g ˜ g , ˜ g → b ¯ t ˜ χ + 0-1 e , µ 3 b Yes 20.1 ˜ g 1.3 TeV m( ˜ χ 0 1 ) < 300 GeV 1407.0600 1 3 rd gen. squarks direct production b 1 ˜ ˜ b 1 , ˜ χ 0 ˜ χ 0 b 1 → b ˜ 1 0 2 b Yes 20.1 b 1 100-620 GeV m( ˜ 1 ) < 90 GeV 1308.2631 b 1 ˜ ˜ b 1 , ˜ b 1 → t ˜ χ ± 2 e , µ (SS) 0-3 b Yes 20.3 b 1 ˜ 275-440 GeV m( ˜ 1 )=2 m( ˜ χ ± 1 ) χ 0 1404.2500 ˜ t 1 ˜ t 1 , ˜ t 1 → b ˜ χ ± 1 1-2 e , µ 1-2 b Yes 4.7/20.3 ˜ ˜ 110-167 GeV 230-460 GeV m( ˜ χ ± 1 ) = 2m( ˜ χ 0 1 ), m( ˜ χ 0 1209.2102, 1407.0583 1 t 1 t 1 1 )=55 GeV t 1 ˜ ˜ t 1 , ˜ t 1 → Wb ˜ χ 0 1 or t ˜ χ 0 1 0-2 e , µ 0-2 jets/1-2 b Yes 20.3 ˜ t 1 ˜ t 1 90-191 GeV 210-700 GeV m( ˜ 1 )=1 GeV χ 0 1506.08616 ˜ t 1 ˜ t 1 , ˜ t 1 → c ˜ χ 0 0 mono-jet/ c -tag Yes 20.3 ˜ t 1 90-240 GeV m( ˜ t 1 )-m( ˜ χ 0 1407.0608 1 1 ) < 85 GeV t 1 ˜ ˜ t 1 (natural GMSB) 2 e , µ ( Z ) 1 b Yes 20.3 ˜ t 1 150-580 GeV m( ˜ χ 0 1 ) > 150 GeV 1403.5222 t 2 ˜ ˜ t 2 , ˜ t 2 → ˜ t 1 + Z 3 e , µ ( Z ) 1 b Yes 20.3 t 2 ˜ 290-600 GeV m( ˜ χ 0 1 ) < 200 GeV 1403.5222 ℓ L , R ˜ ˜ ℓ L , R , ˜ ℓ → ℓ ˜ χ 0 2 e , µ ˜ m( ˜ χ 0 1 0 Yes 20.3 ℓ 90-325 GeV 1 )=0 GeV 1403.5294 χ + ˜ 1 ˜ χ − 1 , ˜ χ + 1 → ˜ ℓν ( ℓ ˜ ν ) 2 e , µ 0 Yes 20.3 ˜ χ ± 140-465 GeV m( ˜ 1 )=0 GeV, m( ˜ χ 0 ℓ, ˜ ν )=0.5(m( ˜ χ ± 1 )+m( ˜ χ 0 1 )) 1403.5294 χ + ˜ 1 ˜ χ − 1 , ˜ χ + 2 τ - Yes 20.3 χ ± ˜ 1 100-350 GeV m( ˜ χ 0 ν )=0.5(m( ˜ χ ± 1 )+m( ˜ χ 0 1407.0350 direct 1 → ˜ τν ( τ ˜ ν ) 1 1 )=0 GeV, m( ˜ τ, ˜ 1 )) EW χ ± ˜ χ 0 1 ˜ 2 → ˜ ℓ L ν ˜ ℓ L ℓ (˜ νν ) , ℓ ˜ ℓ L ℓ (˜ ν ˜ νν ) 3 e , µ 0 Yes 20.3 χ ± ˜ 1 , ˜ χ 0 700 GeV m( ˜ 1 )=m( ˜ χ ± χ 0 2 ), m( ˜ χ 0 1 )=0, m( ˜ ℓ, ˜ ν )=0.5(m( ˜ χ ± 1 )+m( ˜ χ 0 1 )) 1402.7029 χ ± ˜ χ 0 1 ˜ 2 → W ˜ χ 0 1 Z ˜ χ 0 2-3 e , µ 0-2 jets Yes 20.3 ˜ χ ± 1 , ˜ χ 0 2 420 GeV m( ˜ χ ± 1 )=m( ˜ χ 0 2 ), m( ˜ χ 0 1 )=0, sleptons decoupled 1403.5294, 1402.7029 χ 0 χ 0 χ 0 1 χ ± χ 0 2 ˜ χ ± 1 ˜ 2 → W ˜ 1 h ˜ 1 , h → b ¯ b / WW /ττ/γγ e , µ, γ 0-2 b Yes 20.3 ˜ 1 , ˜ 2 250 GeV m( ˜ χ ± 1 )=m( ˜ χ 0 2 ), m( ˜ χ 0 1 )=0, sleptons decoupled 1501.07110 χ 0 ˜ χ 0 2 ˜ 3 , ˜ χ 0 2 , 3 → ˜ ℓ R ℓ 4 e , µ 0 Yes 20.3 ˜ χ 0 620 GeV m( ˜ 2 )=m( ˜ χ 0 3 ), m( ˜ χ 0 1 )=0, m( ˜ χ 0 ℓ, ˜ ν )=0.5(m( ˜ χ 0 2 )+m( ˜ χ 0 1 )) 1405.5086 - 2 , 3 GGM (wino NLSP) weak prod. 1 e , µ + γ Yes 20.3 W ˜ 124-361 GeV c τ< 1 mm 1507.05493 Direct ˜ χ + 1 ˜ 1 prod., long-lived ˜ χ − χ ± 1 Disapp. trk 1 jet Yes 20.3 ˜ χ ± 270 GeV m( ˜ 1 )-m( ˜ χ ± χ 0 1 ) ∼ 160 MeV, τ (˜ χ ± 1 ) = 0.2 ns 1310.3675 Direct ˜ χ + 1 ˜ 1 prod., long-lived ˜ χ − χ ± dE/dx trk - Yes 18.4 ˜ χ ± 1 482 GeV m( ˜ 1 )-m( ˜ χ ± χ 0 1 ) ∼ 160 MeV, τ (˜ χ ± 1506.05332 Long-lived particles 1 1 1 ) < 15 ns Stable, stopped ˜ g R-hadron 0 1-5 jets Yes 27.9 g ˜ 832 GeV m( ˜ 1 )=100 GeV, 10 µ s <τ (˜ χ 0 g ) < 1000 s 1310.6584 Stable ˜ g R-hadron trk - - 19.1 ˜ g 1.27 TeV 1411.6795 χ 0 - - χ 0 GMSB, stable ˜ τ , ˜ 1 → ˜ τ (˜ e , ˜ µ ) + τ ( e , µ ) 1-2 µ 19.1 ˜ 1 537 GeV 10 < tan β< 50 1411.6795 GMSB, ˜ χ 0 1 → γ ˜ G , long-lived ˜ χ 0 2 γ - Yes 20.3 ˜ χ 0 435 GeV 2 <τ (˜ χ 0 1 ) < 3 ns, SPS8 model 1409.5542 g , ˜ χ 0 1 displ. ee / e µ/µµ - - ˜ χ 0 1 χ 0 ˜ g ˜ 1 → ee ν/ e µν/µµν 20.3 1 1.0 TeV 7 < c τ (˜ 1 ) < 740 mm, m( ˜ g )=1.3 TeV 1504.05162 GGM ˜ g ˜ g , ˜ χ 0 1 → Z ˜ G displ. vtx + jets - - 20.3 χ 0 ˜ 1.0 TeV 6 < c τ (˜ χ 0 1 ) < 480 mm, m( ˜ g )=1.1 TeV 1504.05162 1 LFV pp → ˜ ν τ + X , ˜ ν τ → e µ/ e τ/µτ e µ , e τ , µτ - - 20.3 ˜ ν τ 1.7 TeV λ ′ 311 =0.11, λ 132 / 133 / 233 =0.07 1503.04430 Bilinear RPV CMSSM 2 e , µ (SS) 0-3 b Yes 20.3 ˜ q , ˜ g 1.35 TeV m( ˜ q )=m( ˜ g ), c τ LS P < 1 mm 1404.2500 ˜ χ + 1 ˜ χ − 1 , ˜ χ + 1 → W ˜ χ 0 1 , ˜ χ 0 1 → ee ˜ ν µ , e µ ˜ ν e 4 e , µ - Yes 20.3 ˜ χ ± 750 GeV m( ˜ χ 0 1 ) > 0.2 × m( ˜ χ ± 1 ), λ 121 � 0 1405.5086 χ + χ − χ + χ 0 χ 0 3 e , µ + τ - χ ± ˜ 1 χ 0 RPV ˜ 1 ˜ 1 , ˜ 1 → W ˜ 1 , ˜ 1 → ττ ˜ ν e , e τ ˜ ν τ Yes 20.3 1 450 GeV m( ˜ 1 ) > 0.2 × m( ˜ χ ± 1 ), λ 133 � 0 1405.5086 ˜ g ˜ g , ˜ g → qqq 0 6-7 jets - 20.3 ˜ g 917 GeV BR( t )=BR( b )=BR( c )=0% 1502.05686 g → q ˜ χ 0 1 , ˜ χ 0 0 6-7 jets - 20.3 g ˜ m (˜ χ 0 g ˜ ˜ g , ˜ 1 → qqq 870 GeV 1 )=600 GeV 1502.05686 g ˜ ˜ g , ˜ g → ˜ t 1 t , ˜ t 1 → bs 2 e , µ (SS) 0-3 b Yes 20.3 g ˜ 850 GeV 1404.250 ˜ t 1 ˜ t 1 , ˜ t 1 → bs 0 2 jets + 2 b - 20.3 t 1 ˜ 100-308 GeV ATLAS-CONF-2015-026 ˜ t 1 ˜ t 1 , ˜ t 1 → b ℓ 2 e , µ 2 b - 20.3 ˜ t 1 0.4-1.0 TeV BR( ˜ t 1 → be /µ ) > 20% ATLAS-CONF-2015-015 Other Scalar charm, ˜ c → c ˜ χ 0 0 2 c Yes 20.3 ˜ c 490 GeV m( ˜ 1 ) < 200 GeV χ 0 1501.01325 1 10 − 1 1 Mass scale [TeV] *Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty. • Higgs found! SM complete and consistent up to Plank scale. But... • NO smoking gun in direct searches up to ∼ 5 TeV... 2 / 45

  3. SUSY, GUT, composite Higgs, large extra dimensions theories What is the energy scale of new physics? require the presence of new particles above the Fermi scale. E. Graverini (Universität Zürich) SHiP: Search for Hidden Particles 3/45 ➜ Neutrino masses and oscillations: Right Handed see-saw neutrino masses from 1 eV to 10 15 GeV ➜ Dark matter: From 10 − 22 eV (super-light scalar) to ≥ 10 20 GeV (wimpzilla, Q-ball) ➜ Baryogenesis: Mass of new particle from 10 MeV to 10 15 GeV ➜ Higgs mass hierarchy: 3 / 45

  4. E. Graverini (Universität Zürich) Where is new physics? Experimental approach SHiP: Search for Hidden Particles 4/45 inguez om aniel D Richard J acobsson and D ➜ Unsolved problems = ⇒ new particles ➜ Why didn’t we detect them? Too heavy or too weakly interacting 4 / 45

  5. Hidden particles – it may have a rich structure – very weak interaction with matter – very long-lived objects! E. Graverini (Universität Zürich) SHiP: Search for Hidden Particles 5/45 L world = L SM + L portal + L HS • Hidden Sector (HS) naturally accomodates Dark Matter • Interaction with visible sector (SM) proceeds through mediators • HS processes very strongly suppressed relative to SM – production BRs ∼ 10 − 10 • Can search HS through decays to visible particles 5 / 45

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend