electroweak symmetry breaking with holomorphic
play

Electroweak Symmetry Breaking with Holomorphic Supersymmetric - PowerPoint PPT Presentation

Electroweak Symmetry Breaking with Holomorphic Supersymmetric NambuJona-Lasinio Model Talk at PHENO 2010 OTTO C. W. KONG Natl Central U, Taiwan 1 NambuJona-Lasinio Model :- Otto Kong (NCU) 09ntnu-1 dynamical symmetry


  1. Electroweak Symmetry Breaking with Holomorphic Supersymmetric Nambu–Jona-Lasinio Model — Talk at PHENO 2010 OTTO C. W. KONG — Nat’l Central U, Taiwan

  2. 1 Nambu–Jona-Lasinio Model :- Otto Kong (NCU) — 09ntnu-1 • dynamical symmetry breaking • four-fermion interaction ψ − σ µ ∂ µ ψ − + g 2 ¯ L ψ = i ¯ ψ + σ µ ∂ µ ψ + + i ¯ ψ + ¯ ψ − ψ + ψ − → L ψ − ( µφ † + gψ + ψ − )( µφ + g ¯ ψ + ¯ − ψ − ) ψ − σ µ ∂ µ ψ − − µ 2 φ † φ − µg ( φ † ¯ = i ¯ ψ + σ µ ∂ µ ψ + + i ¯ ψ + ¯ ψ − + φψ + ψ − ) • auxiliary scalar field φ (no kinetic term) • EL-eq for φ † gives φ as composite φ = − g/µ ¯ ψ + ¯ ψ − • � φ � � = 0 = ⇒ symmetry breaking and fermion mass

  3. 2 → low energy effective field theory :- Otto Kong (NCU) — 09ntnu-2a • 1-loop effective potential for φ gives gap equation � φ � � = 0 solution for g 2 Λ 2 8 π 2 > 1 • Dirac fermion mass m = µg � φ � for ψ + – ψ − g 2 � ¯ g 2 ¯ ψ + ¯ ψ + ¯ � ψ − ψ + ψ − = ⇒ ψ − ψ + ψ − • kinetic term for φ through wave-function renormalization fermion-loop propagator with Yukawa vertices ( m ≪ Λ) � � c µ 2 g 2 ln Λ 2 Z = N M 2 + O (1) 16 π 2 • Higgs with mass 2 m and a Goldstone boson

  4. 3 √ φ − → φ/ Z :- Otto Kong (NCU) — 09ntnu-2b L ψ = i ¯ ψ + σ µ ∂ µ ψ + + i ¯ ψ − σ µ ∂ µ ψ − + ∂ µ φ † ∂ µ φ • ˜ 2 ( φ † φ ) 2 − ˜ µ 2 φ ∗ φ − λ − ˜ yφψ + ψ − + h.c. µg 4 π 1 √ — y = ˜ Z = √ √ N ln (Λ 2 /M 2 ) c � � µ 2 = c g 2 − (Λ 2 − M 2 ) 8 π 2 2 — ˜ ln (Λ 2 /M 2 ) N 32 π 2 ˜ — λ = N c ln (Λ 2 /M 2 ) • condition for � φ � � = 0 gives gap equation result

  5. Supersymmetrizing the NJL Model (Naively):- • i ¯ d 4 θ ¯ � ψ + σ µ ∂ µ ψ + Φ + Φ + − → • g 2 ¯ d 4 θ g 2 ¯ ψ + ¯ Φ + ¯ � ψ − ψ + ψ − Φ − Φ + Φ − − → d 2 θ µg ΦΦ + Φ − � • − µg φψ + ψ − − → • − µ 2 φ ∗ φ � d 2 θ µ 2 ΦΦ − → BUT :- • φ = − g/µ ¯ ψ + ¯ ψ − implies µ 2 φ ∗ φ = − µg φψ + ψ − = g 2 ¯ ψ + ¯ ψ − ψ + ψ − (no SUSY !) • no nontrivial vacuum without SUSY breaking

  6. The Supersymmetric NJL Model :- • i ¯ d 4 θ ¯ Φ + Φ + (1 − m 2 θ 2 ¯ � θ 2 ) ψ + σ µ ∂ µ ψ + − → • g 2 ¯ d 4 θ g 2 ¯ ψ + ¯ Φ + ¯ � ψ − ψ + ψ − − → Φ − Φ + Φ − d 2 θ µg Φ 2 Φ + Φ − � • − µg φψ + ψ − − → d 4 θ ¯ • − µ 2 φ ∗ φ d 2 θ µ Φ 1 Φ 2 + � � − → Φ 1 Φ 1 BUT :- • EL-eq for Φ 2 gives Φ 1 = − g Φ + Φ − implies d 4 θ g 2 ¯ d 4 θ ¯ Φ + ¯ � � Φ 1 Φ 1 = Φ − Φ + Φ − • Φ 2 not the composite Φ 1 plays the Higgs superfield � Φ 1 � = 0

  7. An Alternative Supersymmetrization ? • i ¯ Φ + Φ + (1 − m 2 θ 2 ¯ d 4 θ ¯ ψ + σ µ ∂ µ ψ + � θ 2 ) − → � d 2 θ µg Φ 0 Φ + Φ − • − µg φψ + ψ − − → µ • − µ 2 φ ∗ φ � d 2 θ 2 Φ 0 Φ 0 − → (¯ Φ + Φ + + ¯ Φ − Φ − )(1 − m 2 θ 2 ¯ � d 4 θ � θ 2 ) � = L = ⇒ 0 + √ µG Φ 0 Φ + Φ − � µ � d 2 θ 2 Φ 2 � + + h.c. W = G • consider superpotential 2 Φ + Φ − Φ + Φ − √ √ 2 ( √ µ Φ 0 + G Φ + Φ − )( √ µ Φ 0 + → W − 1 G Φ + Φ − ) −

  8. 7 With Holomorphic Four-Chiral Superfield Otto Kong (NCU) — 09ntnu-6 Interaction :- 2 Φ + Φ − Φ + Φ − contains no g 2 ¯ ψ + ¯ • W = G ψ − ψ + ψ − � • EL-eq for auxiliary superfield Φ 0 gives Φ 0 = − G/µ Φ + Φ − √ µG µ 2 Φ 2 Φ 0 Φ + Φ − = G implies 0 = − 2 Φ + Φ − Φ + Φ − 2 G • � Φ 0 � = ⇒ 2 � Φ + Φ − � Φ + Φ − Dirac mass for Φ + –Φ − • kinetic term for Φ 0 from wave-function renormalization through Φ + –Φ − loop with Yukawa vertices

  9. 8 → low energy effective field theory :- Otto Kong (NCU) — 09ntnu-7 1 + (2 m 2 + A 2 ) θ 2 ¯ d 4 θ Z 0 ¯ Φ 0 e 2 V Φ Φ 0 � θ 2 � � • (gauged-)kinetic term � � ln Λ 2 where Z 0 = N c µG M 2 + O (1) 16 π 2 0 = − (2 m 2 + A 2 ), tachyonic soft mass ( cf. radiative EWSB) m 2 — ˜ √ µG 4 π 1 √ — y = ˜ √ Z 0 = √ N ln (Λ 2 /M 2 ) c Z 0 = 16 π 2 µ 1 — µ = ˜ ln (Λ 2 /M 2 ) N c G 2 Φ 2 term = • µ ⇒ Φ in real representation of symmetry

  10. 9 Condensate/Mass Generation — A Comparison :- Otto Kong (NCU) — 09ntnu-8 • NJL : g 2 � ¯ ψ + ¯ � ψ − ψ + ψ − − → − µg � φ � ψ + ψ − — symmetry breaking with bi-fermion condensate � φ � d 4 θ g 2 � ¯ Φ + ¯ � � • SNJL : Φ − Φ + Φ − � � � � F † F † − → − g [ A + F − + A − F + − ψ + ψ − ] 1 = − µA 2 1 — � F 1 � = − g � A + F − + A − F + − ψ + ψ − � , sbi-fermion condensate d 2 θ − G � Φ + Φ − � Φ + Φ − � • HSNJL : √ µG � A 0 � [ A + F − + A − F + − ψ + ψ − ] + √ µG � F 0 � A + A − − → � — � A 0 � = − G/µ � A + A − � , a bi-scalar condensate

  11. 10 Otto Kong (NCU) — 09ntnu-9 T owards EW Symmetry Breaking

  12. 11 NJL Model → SM :- Otto Kong (NCU) — 09ntnu-10 g 2 ¯ Q ¯ t c Qt c • four-fermion interaction • Higgs doublet as top-composite φ = − g/µ ( ¯ Q ¯ t c ) • top condensate breaks EW symmetry → fermion masses — gives top quark mass at to infared quasi-fixed point (Λ ∼ 10 19 GeV ) • high m t ∼ 218 GeV Bardeen, Hill, Lindner 90 (Λ ∼ 10 15 − 10 19 GeV ) m t ∼ 214 − 202 GeV Marciano 89,90 m t ∼ 253 GeV Miransky, Tanabashi, Yamawaki 89; King & Mannan 90,91 • extensions, e.g. two-Higgs-doublet model

  13. 12 SNJL Models → MSSM (why SUSY ?):- Otto Kong (NCU) — 09ntnu-11 • SM → MSSM — hierarchy/fine-tuning problem scalar field is somewhat sick • SM fermion spectrum sort of fixed (anomaly cancelation) e.g. OK 96 scalar content — only part arbitrary ( cf. gauge symmetry) • SUSY — technically natural hierarchy scalar as (part of) chiral superfield (constrained as fermions) Vs Georgi’s survival hypothesis • BUT µ -problem — vectorlike pair of Higgs superfields • SNJL models solve our problems — and avoid fine-tuning of four-quark coupling(s)

  14. 13 Towards the MSSM :- Q α ˆ U c ˆ Q ′ β ˆ D c (1 + Bθ 2 ) Otto Kong (NCU) — 09ntnu-12 αβ ˆ • consider W = G ε Q ′ ˆ → W − µ ( ˆ H d − λ u ˆ Q ˆ U c )( ˆ H u − λ d ˆ D c )(1 + Bθ 2 ) W − U c + y d ˆ Q ′ ˆ = ( − µ ˆ H d ˆ H u + y u ˆ Q ˆ H u ˆ H d ˆ D c )(1 + Bθ 2 ) Q ′ ˆ H u = y d ˆ µ ˆ H d = y u ˆ Q ˆ ˆ D c U c • two composites — and µ • low energy effective theory looks like MSSM ( A = B ) � � • symmetric role for ˆ H u and ˆ also : µλ u λ d = y u y d H d = G µ — numerical lifted through non-universal soft masses — expect � h u � > ∼ � h d � (Vs UBB in D -flat)

  15. 14 Holomorphic Vs Old Model (for MSSM) :- Otto Kong (NCU) — 09ntnu-13 • bottom together with (vs only) top mass at quasi-fixed point ⋆ both (vs one) Higgs superfields as composites • large (vs small) tan β • A t ≃ A b ≃ B (vs A t ≃ 0) • m 2 d ≃ − ( m 2 Q + m 2 b + | A b | 2 ) H plus (vs only) m 2 u ≃ − ( m 2 Q + m 2 t + | A t | 2 ) H ⋆ full W [= G ijkh Q i U c j Q k D c h (1 + Aθ 2 ) + G e 3 U c 3 L i E c j (1 + Aθ 2 )] ij Q — non-holomorphic case needs similar holomorphic terms for Yukawa couplings of down-type quarks and charged leptons • sbottom and stop condensates for u i and d i + ℓ i masses (vs top condensate and stop condensates for u i and d i + ℓ i masses)

  16. 15 Numerical (RG analysis) Results :- Otto Kong (NCU) — 09ntnu-14 • earlier MSSM t − b − τ quasi-fixed point analysis Froggatt et.al 93 (without background model) m t = 184 . 3 ± 6 . 8 GeV, m h = 121 . 8 ± 4 . 3 GeV • ? m t = 171 . 2 ± 2 . 1 GeV • old SNJL: MSSM t quasi-fixed point analysis Carena et.al 92 — high Λ and large tan β lower m t • infared quasi-fixed point NOT necessary SNJL – y t blows up at Λ HSNJL – y t and y b blows up at ∼ Λ

  17. 16 Our Solution :- Otto Kong (NCU) — 09ntnu-14p 75 M s = 10 TeV M s = 1 TeV 70 M s = 200 GeV 65 60 tan β 55 50 45 40 35 10 4 10 6 10 8 10 10 10 12 10 14 10 16 Λ [GeV]

  18. 17 Illustrative y t and y b :- Otto Kong (NCU) — 09ntnu-14r M s = 1 TeV 5 y b 4.5 tan β = 57.8 tan β = 42.8 y t Λ b = 10 4 GeV Λ b = 10 10 GeV 4 3.5 3 y t , y b 2.5 2 1.5 1 0.5 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 µ [GeV]

  19. 18 Mass of the lightest Higgs boson :- Otto Kong (NCU) — 09ntnu-14h 130 m A ≥ 100 GeV m A = 140 GeV 125 m A = 130 GeV 120 m A = 120 GeV m A = 110 GeV 115 m A = 100 GeV m h [GeV] 110 105 100 95 90 10 3 10 4 200 M s [GeV]

  20. 19 Final Remarks :- Otto Kong (NCU) — 09ntnu-15 • SNJL model with holomorphic term works • may provide more interesting version of MSSM — SUSY : scalar → chiral superfield — problematic MSSM superfield spectrum — vectorlike Higgs superfields, turn up as composites — four-superfield ( G ) term from integrated out heavy Higgs superfields ? — more natural B (and A ) term, and all Yukawa coupling • chiral symmetry explicitly broken

  21. 20 Otto Kong (NCU) — end T HANK Y OU ! well done Otto !

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend