collaboration atlas cppm ifac um2
play

Collaboration ATLAS_CPPM/IFAC_UM2 Probing the nature of Electroweak - PowerPoint PPT Presentation

Collaboration ATLAS_CPPM/IFAC_UM2 Probing the nature of Electroweak Symmetry Breaking at the LHC with the ATLAS Detector PESBLADe G. Moultaka 1 IFAC-Montpellier CNRS & University of Montepllier II Marseille Oct. 29 15 [ct


  1. Collaboration ATLAS_CPPM/IFAC_UM2 Probing the nature of Electroweak Symmetry Breaking at the LHC with the ATLAS Detector PESBLADe G. Moultaka 1 IFAC-Montpellier CNRS & University of Montepllier II Marseille Oct. 29 ’15 [côté montpellierain: Michele Frigerio 1 , Cyril Hugonie 2 , Jean-Loïc Kneur 1 , Julien Lavalle 2 ] 1 Laboratoire Charles Coulomb (L2C) 2 Laboratoire Univers & Particules de Montpellier (LUPM)

  2. 1/ quick reminder of IFAC expertise and possible involvement 2/ ATLAS/CPPM expertise and possible involvement 3/ CPPM/IFAC (OCEVU) Postdoc + (OCEVU) PhD project 4/ quick overview of EW effective operators zoology 5/ Heavy colored states + Higgs(->bb) "final states" back to some pending questions since the 16-17-may meeting 5.1/composite Higgs 5.2/susy 5.3/ model-independent effective approach 6/ generators and a roadmap involving the Postdoc 7/ the Postdoc and PhD projects

  3. 1/ quick reminder of IFAC expertise and possible involvement [Michele Frigerio, Cyril Hugonie, Jean-Loïc Kneur, Julien Lavalle, G. M.] + Felix Brümmer susy: MSSM, NMSSM (specific models, mSUGRA, GMSB, AMSB,etc. spectrum calc. authors, SuSpect2,3 (C++), NMSTools) composite Higgs: "SILH-like", GUT scenarios, heavy top-like states,... dark matter: candidates, relic density, DD & ID constraints,...) 2/ ATLAS/CPPM expertise and possible involvement [Yann Coadou] H → bb , τ [Cristinel Diaconu] PDF + multi Ws [Lorenzo Feligioni] top, trigger, b-tagging! [Yanwen Liu (ext.) + Monnier] Generators + TGCs [Steve Muanza] RPV susy + Generators [Mossadek Talby] top, b-tagging [Laurent Vacavant] top, H → bb , b-tagging 3/ CPPM/IFAC Postdocs: Sara Diglio, Lorenzo Basso CPPM/IFAC PhDs: Venugopal Ellajosyula, Rima El Kosseifi.

  4. stop decays in RPV SUSY scenarios R-Parity Violation in t ¯ tH Final States Sara Diglio, 1 Lorenzo Feligioni, 1 and Gilbert Moultaka 2 1 Centre de Physique des Particules de Marseille (CPPM), UMR 7346 IN2P3-Univ. Aix-Marseille, Marseille, F-France 2 Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Universit de Montpellier, Montpellier, F-France (Dated: October 29, 2015) Abstract We study signatures of R-parity violation originating from hadronically decaying light top squarks at the LHC. It is shown that higher jet multiplicities scan typically smaller R-parity violating couplings, down to tiny values where the R-parity conserving experimental bounds set in due to long-lived lightest supersymmetric particles. This suggests a general search strategy involv- ing different final states with heavy- and light-jets or leptons that would allow a more complete interpretation of the signal or of mass versus coupling exclusion limits. We illustrate the case with some benchmark points in the model independent setting of the low-energy phenomenological MSSM and discuss signal versus background issues stressing the similarity with the t ¯ tH ( → b ¯ b ) final states. PACS numbers:

  5. stop decays in RPV SUSY scenarios ◮ R-parity concerving SUSY seems decreasingly natural ◮ if SUSY is around → a light stop (cf. 125GeV Higgs mass) ◮ if R-parity violated present experimental limits much weaker.

  6. stop decays in RPV SUSY scenarios lepton number violation, W � L = 1 L i . ˆ 2 λ ijk ˆ L i . ˆ L j ˆ E c k + λ ′ ijk ˆ Q j ˆ D c k + µ i ˆ L i . ˆ H 2 baryon number violation, W � B = 1 D β c D γ c 2 λ ′′ ijk ˆ U α c ˆ ˆ k ǫ αβγ i j λ ijk = − λ jik and λ ′′ ijk = − λ ′′ ikj ...+ corresonding soft breaking parameters. → unstable MSSM LSP!

  7. Assumptions (i) λ ′′ 33 i , i = 1 , 2 are the only non-vanishing RPV couplings. (ii) the light part of the SUSY spectrum is composed of one stop, one chargino, one neutralino and the lightest CP-even Higgs. (iii) the RPV-MSSM-LSP is the lightest neutralino. (iv) all other SUSY and Higgs particles, except possibly for the gluino, are assumed to be too heavy to be produced at the LHC. m ˜ t ≥ m χ + ≥ m χ 0 > m t and for the present study m χ + ≈ m χ 0 m ˜ t − m χ 0 < m t m ˜ t − m χ + > m b

  8. ◮ stop production at the LHC: t ¯ pp → ˜ ˜ t mainly through gluon fusion processes. ◮ each stop can decay into one of the three channels: λ ′′ ˜ b t 33i s , d (a) b λ ′′ ˜ b t 33i χ + t ∗ ˜ s, d (b) b λ ′′ b 33i b ˜ t ∗ ˜ s, d t b χ + χ 0 t W f 1 W ∗ f 1 ′ f f ′ (c)

  9. ❍❍❍❍❍ ˜ t ˜ χ + - / t - / R p R p R p -like ¯ ˜ t ❍ ˜ t - / R p 2b2j 4b2j 1t3b2j χ + - / R p 6b2j 1t5b2j R p -like 2t4b2j ◮ all present LHC experimental limits consider only the (a) channel decays. (e.g. m ˜ t � 300 GeV , indep. of λ ” 33 i ). ◮ the main message of our study: higher b+jet multiplicity final states scan lower values of λ ” 33 j ! 2t4b2j 1t5b2j 6b2j 4b2j 2b2j ✲ < > λ ′′ ∼ 10 − 5 ∼ 10 − 4 ∼ 10 − 3 ∼ 10 − 2 ∼ 10 − 1 33 i

  10. Narrow Width Approximation ? ◮ 2 b 2 j t ¯ s ) × Br (¯ σ ( pp → ¯ t → ¯ b ¯ s bs ) ≃ σ ( pp → ˜ ˜ t ) × Br (˜ b ¯ ˜ t → bs ) ◮ 6 b 2 j t ¯ bb ) × Br (¯ σ ( pp → ¯ s ¯ bb bsb ¯ b ) ≃ σ ( pp → ˜ ˜ t ) × Br (˜ t → ¯ s ¯ ˜ t → bsb ¯ b ¯ b ¯ b ) ◮ 2 t 4 b 2 j ... t ¯ sb ... ) × Br (¯ σ ( pp → t ¯ sb ¯ tsb ¯ b ... ) ≃ σ ( pp → ˜ ˜ t ) × Br (˜ t → ¯ ˜ t → bs ¯ b ¯ b ¯ b ... ) ◮ + all the other mixed final states

  11. Narrow Width Approximation ? → assuming the NWA at all the stages of the (on-shell) cascade decays one obtains: ◮ 2b2j r 2 1 × ( λ ′′ 332 ) 4 t ¯ σ ( pp → 2 b 2 j ) ≃ σ ( pp → ˜ ˜ t ) × 1 + r 1 × ( λ ′′ 332 ) 2 � 2 � ◮ 6b2j r 2 2 × ( λ ′′ 332 ) 4 t ¯ σ ( pp → 6 b 2 j ) ≃ σ ( pp → ˜ ˜ t ) × 332 ) 2 � 2 � 332 ) 2 � 2 1 + r 1 × ( λ ′′ 1 + r 2 × ( λ ′′ � ◮ 2t4b2j... 1 t ¯ σ ( pp → 2 t 4 b 2 j ... ) ≃ σ ( pp → ˜ ˜ t ) × 332 ) 2 � 2 � 332 ) 2 � 2 1 + r 1 × ( λ ′′ 1 + r 2 × ( λ ′′ � ◮ ...+ all the other mixed final states t → ¯ Γ(˜ b ¯ s ) [ taken at λ ′′ r 1 332 = 1 ] (0.1) ≡ Γ(˜ t → χ + b ) Γ( χ + → ¯ s ¯ Γ( χ + → ¯ s ¯ b ¯ b ¯ b ) b ) [ taken at λ ′′ r 2 = 332 = 1 ] (0.2) ≡ bf 1 ¯ 2 ¯ 2 ¯ Γ( χ + → ¯ s ¯ f ′ 1 f ′ Γ( χ + → χ 0 f ′ b ¯ f 2 ) f 2 ) N.B. when λ ′′ 332 ≪ 1 the RPC-like final states dominate!

  12. setting the tools from scratch the R-parity violating MSSM has been generated by Sara through SARAH → SPheno → MD5

  13. benchmark points 1 2 tan β 10 M 1 2.5 TeV M 2 1.5 TeV M 3 1.7 TeV m ˜ 2 TeV Q m ˜ 570 GeV 964 GeV tR m ˜ bR = m ˜ uR = m ˜ dR = m ˜ eR = m ˜ q = m ˜ 3 TeV l T t -2100 GeV -2150 GeV ( m A ) in 2.5 TeV µ 400-650 GeV 750-1000 GeV λ ′′ 10 − 7 − 10 − 1 10 − 7 − 10 − 1 33 i benchmark points 1 2 m ˜ ∼ 600 GeV ∼ 1 TeV t m χ + ∼ 400-650 GeV ∼ 750-1000 GeV m χ 0 ∼ 400-650 GeV ∼ 750-1000 GeV m ˜ t − m χ 0 ∼ 5 - 194 GeV ∼ 1 - 239 GeV m h 0 ∼ 125 GeV m A ≈ m H 0 ≈ m H ± ∼ 2.5 TeV M ˜ ∼ 1.87 TeV g M ˜ t 2 ≈ M ˜ ∼ 2 TeV b 1 M ˜ b 2 ≈ M ˜ u 1 , 2 ≈ M ˜ ∼ 3 TeV d 1 , 2 M ˜ l 1 , 2 , M ˜ ∼ 3 TeV ν 1 , 2 3 − 3.3 × 10 − 11 3.2 − 3.3 × 10 − 11 ( g − 2 ) µ 5.7 − 5.9 × 10 − 5 ∼ 5.5 × 10 − 5 δρ BR ( B → X s γ ) / BR ( B → X s γ ) SM 0.89 − 0.92 0.95 − 0.96 BR ( B 0 3.36 − 3.39 × 10 − 9 3.38 − 3.40 × 10 − 9 s → µµ ) 1.08 − 1.09 × 10 − 10 ∼ 1.09 × 10 − 10 BR ( B 0 d → µµ )

  14. [pb] 1 [pb] 1 − 2 − 2 10 10 X X − 5 − 5 10 10 → → ~ ~ t t ~ t − 8 ~ t − 8 10 10 → → pp pp − 11 − 11 10 10 σ σ − 14 − 14 10 10 − 17 − 17 10 10 − 20 − 20 10 10 ~ ~ ~ ~ Decays: t t → X Decays: t t → X − 23 − 23 10 2b2j 10 2b2j 4b2j 4b2j − 26 − 26 10 10 6b2j 6b2j 1t5b2j 1t5b2j − 29 − 29 10 10 2t4b2j 2t4b2j − 7 − 6 − 5 − 4 − 3 − 2 − 1 − 7 − 6 − 5 − 4 − 3 − 2 − 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 ’’ ’’ λ λ 33i 33i 1 1 [pb] [pb] − 2 − 2 10 10 X X − 5 − 5 10 10 → → ~ ~ t t ~ t − 8 ~ t − 8 10 10 → → pp pp − 11 − 11 10 10 σ σ − 14 − 14 10 10 − 17 − 17 10 10 − 20 − 20 10 10 ~ ~ ~ ~ Decays: t t → X Decays: t t → X − 23 − 23 10 2b2j 10 2b2j 4b2j 4b2j − − 10 26 10 26 6b2j 6b2j 1t5b2j 1t5b2j − 29 − 29 10 10 2t4b2j 2t4b2j − 7 − 6 − 5 − 4 − 3 − 2 − 1 − 7 − 6 − 5 − 4 − 3 − 2 − 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 ’’ ’’ λ λ 33i 33i Figure : stop-anti-stop production and decay cross-sections at √ s = 13TeV, for 4 , 6 , 8 , 10 , 12jets or jets+leptons final states, versus λ ′′ 33 i ; m ˜ t = 1TeV and m ˜ t − m χ + = 50 , 100 , 200 , 250GeV.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend