electrostatic control of spin polarization
play

Electrostatic control of spin polarization in a quantum Hall - PowerPoint PPT Presentation

Electrostatic control of spin polarization in a quantum Hall ferromagnet: a platform to realize high order non- Abelian excitations Aleksander Kazakov & Leonid Rokhinson Department of Physics, Purdue University V. Kolkovsky, Z. Adamus,


  1. Electrostatic control of spin polarization in a quantum Hall ferromagnet: a platform to realize high order non- Abelian excitations Aleksander Kazakov & Leonid Rokhinson Department of Physics, Purdue University V. Kolkovsky, Z. Adamus, & Tomasz Wojtowicz Institute of Physics, Polish Academy of Science, Warsaw, Poland George Simion & Yuli Lyanda-Geller Department of Physics, Purdue University Luchon, France May 24 - 29, 2015

  2. Engineering Majorana fermions requirements: 1D topological superconductor spinless (one mode) superconductor SC SC E Z E Z E F k k k pairing 2  D possible B so  B B so || B B = 0 Sau , et al ’10, Alicea , et al ‘10 2 6/11/2015 Leonid Rokhinson, Purdue University

  3. parameter space 𝛦 2 + 𝐹 𝐺 2 single-spin condition: 𝐹 𝑎 > to protect superconductivity: 𝐹 𝑎 ~𝐹 𝑇𝑃 B so  B      2 2 2 2 ( / ) E k k d k SO D z D w>200nm k y    d=20nm 6 1 2.6 [meV], [10 cm ] E k k SO [ 110 ]    d=100nm 6 1 0.1 [meV], [10 cm ] E k k k x [110] SO smallest dimension defines E so : small d ⇒ large E so ⇒ large E F ⇒ less localization 3 6/11/2015 Leonid Rokhinson, Purdue Univesity

  4. Characteristic 4  energy-flux relation modification of the Josephson phase 2  I  sin( f ) trivial superconductor Cooper pairs, topological superconductor 4  Majorana particles, I  sin( f/2) 𝑐 † = (𝛿 𝑚 − 𝑗𝛿 𝑛 ) Kitaev ‘01 Lutchyn ‘10 Kwon ’04 4 6/11/2015 Leonid Rokhinson, Purdue Univesity

  5. ac Josephson effect direct inverse 𝜚 1 𝜚 1 𝜚 2 𝜚 2 V I 𝑒(Δ𝜚) = 2𝑓𝑊 𝐽 = 𝐽 0 + 𝐽 𝜕 sin(𝜕𝑢) ℏ 𝑒𝑢 𝐽 𝑡 = 𝐽𝑑 sin 𝜕 𝐾 𝑢 = 𝐽 𝑑 sin 2𝑓𝑊 ℎ𝜕 ℏ 𝑢 𝑊 = 2𝑓 Current oscillates with frequency  V Constant voltage steps  w 5 6/11/2015 Leonid Rokhinson, Purdue Univesity

  6. Disappearance of the first Shapiro step V ~ dc rf 24 B=0 B=1.0 T B=1.6 T B=2.1 T B=2.5 T 12 V (  V) 0 -12 -24 -200 0 200 -200 0 200 -200 0 200 -200 0 200 -200 0 200 I (nA) I (nA) I (nA) I (nA) I (nA) f = 3 GHz LR, X. Liu, J. Furdyna, Nature Physics 8 , 795 (2012) 6 6/11/2015 Leonid Rokhinson, Purdue Univesity

  7. Shapiro steps 2𝑓𝑤 𝑠𝑔 Δ𝐽 𝑜 = A|𝐾 𝑜 | ℏ𝜕 𝑠𝑔 12 dV/dI B=0, f = 3 GHz 10 40 5 32 f = 4 GHz 10 V rf = 14.25 mV 24 0 16 8 V (  V) 0 8 -8 -16 -24 -32 V rf (mV) -40 6 40 4 dV/dI 20 0 2 -300 -200 -100 0 100 200 300 I (nA) 0 -200 0 200 0 300 0 1000 1000 1000 100  I 0 (nA)  I 1  I 2  I 3  I 4 I (nA) 7 6/11/2015 Leonid Rokhinson, Purdue Univesity

  8. dV/dI vs B step @ 6  V step @ 12  V 8 6/11/2015 Leonid Rokhinson, Purdue Univesity

  9. 4-periodic Josephson supercurrent in HgTe-based 3D TI Wiedenmann, …M . Klapwijk, …, Seigo Tarucha, L. W. Molenkamp arXiv:1503.05591 9 6/11/2015 Leonid Rokhinson, Purdue Univesity

  10. Advantage of 1D wires: Majorana modes are localized easy to perform spectroscopy Disadvantage of 1D wires: Majorana modes are localized almost impossible to perform exchange magnetic quantum Hall superconductivity semiconductors effect new materials to support exotic non-Abelian excitations reconfigurable 1D topological superconductors in 2D systems 10 6/11/2015 Leonid Rokhinson, Purdue Univesity

  11. Motivation and inspiration Topological Quantum Computation - From Basic Concepts to First Experiments Ady Stern & Netanel Lindner Science, 2013 , 339 , 1179 Exotic non-Abelian anyons from conventional fractional quantum Hall states David J. Clarke, Jason Alicea, and Kirill Shtengel Nature Commun., 2012 , 4, , 1348 11 6/11/2015 Leonid Rokhinson, Purdue Univesity

  12. Development of a new system CdTe:Mn QW Ga [Ar]3d 10 4s 2 4p 1 As [Ar]3d 10 4s 2 4p 3 GaAs:Mn S=5/2 p-doping large s-d exchange (ferromagnetic) Mn [Ar]3d 5 4s 2 exchange split ~3 eV (Hunds rule), ½ filled Cd [Kr]4d 10 5s 2 CdTe:Mn Te [Kr]4d 10 5s 2 5p 4 neutral impurity, large s-d exchange 12 6/11/2015 Leonid Rokhinson, Purdue University

  13. Development of a new system High mobility 2D gas in CdTe/CdMgTe QW m *=0.11, E g =1.44 eV add Mn into CdTe (neutral impurity with 5/2 spin) no Mn ~1% Mn 13 6/11/2015 Leonid Rokhinson, Purdue University

  14. FQHE in CdTe:Mn T. Wojtowicz Betthausen, et al, Phys. Rev. B 90 , 115302 (2014) 14 6/11/2015 Leonid Rokhinson, Purdue Univesity

  15. Anomalous Zeeman splitting in CdTe:Mn 𝑕𝜈 𝐶 𝑇𝐶 𝑕 ∗ 𝜈 𝐶 𝐶 + 𝑦 𝑁𝑜 𝐹 𝑡𝑒 𝔆 𝑇 𝐹 𝑜,↑↓ = (𝑜 + 1 2 )ℏ𝜕 𝑑 ± 1 2 𝑙 𝐶 𝑈 cyclotron Zeeman s-d exchange (>0) g * 1.6 1.3% Mn 0.13% Mn for n=1 8 6 4 E n (meV) E n (meV) E n (meV) 2 0 -2 -4 -6 -8 0 2 4 6 8 10 B (Tesla) B (Tesla) B (Tesla) 15 6/11/2015 Leonid Rokhinson, Purdue University

  16. Magnetoreflectivity studies − (trion) to singlet 𝑌 negatively charged exciton complex 𝑌 transition under polarized 𝜏 + /𝜏 − light Wojtowicz, et al, PRB 59, R10437 (1999) 16 6/11/2015 Leonid Rokhinson, Purdue Univesity

  17. new platform for non-Abelian excitations Ohmic SC contact 8  = 1/m 6 spin energy splitting (Kelvin) 4 2 0 -2 -4 B * -6 -8 0 2 4 6 8 10 magnetic field (Tesla) 17 6/11/2015 Leonid Rokhinson, Purdue University

  18. new platform for non-Abelian excitations Ohmic SC contact 8 SC  = 1/m 1 ↑ > 0 1 ↑ < 0 𝜉 = 𝑛 , 𝐹 𝑎 6 𝜉 = 𝑛 , 𝐹 𝑎 spin energy splitting (Kelvin) 4 parafermions 2 0 𝐹 𝑎 -2 -4 𝐹 𝐺 B * B * 𝑦 -6 -8 0 2 4 6 8 10 SC magnetic field (Tesla) braiding sequence 18 6/11/2015 Leonid Rokhinson, Purdue University

  19. Crossing of neighboring LLs |𝑜, 𝑡 1.0 80 |3, ↑ ↑↓ (meV) |3, ↓ 𝜉 60 𝜉 = 2 |2, ↑ 0.5 ↑↓ (K) |2, ↓ 2 ℏ𝜕 𝑑 + 𝐹 𝑡 40 |1, ↑ 𝐹 𝑡 0.0 |1, ↓ 20 |0, ↑ 𝐶 𝜉 𝑜 + 1 -0.5 |0, ↓ 0 -1.0 -20 0 3 6 9 12 0 5 10 magnetic field (T) (c) magnetic field (T) (a) |𝑞, 𝑡 ↑↓ (meV) 0.4 𝜉 = 2 3 , 4 3 , 2 5 , 8 𝜉 = 1 𝜉 = 1 𝑛 |↓ 𝑛 |↑ |4, ↓ 5 |3, ↓ parafermions |2, ↓ 0.2 ↑↓ 𝐷𝐺 + 𝐹 𝑡 𝐹 𝑡 |1, ↓ |4, ↑ 𝐹 𝐺 𝐹 𝑞 |3, ↑ 𝑦 0.0 |2, ↑ 1 3 , 5 3 |1, ↑ -0.2 7 8 9 10 (b) (d) magnetic field (T)

  20. Quantum Hall ferromagnet & level crossing uniformly Mn-doped quantum well Jaroszynski, et al, PRL 89 , 266802 (2002) Jaroszynski, et al, AIP conference proceedings (2005) 20 6/11/2015 Leonid Rokhinson, Purdue Univesity

  21. Gate control of exchange 𝐹 𝑡𝑒 ∝ 𝜔 𝑓 𝑦 𝜓 𝑁𝑜 (𝑦) 𝑒𝑦 0.4 V FG 0.3 band edge (meV) 0.2 0.1 V BG 0.4 0.0  bandedge [meV] 0.3 wave function 0 20 40 60 80 100 120 140 160 180 200 exchange dencity 0.2 0.2 distance (nm) 0.1 0.0 0.4 bandedge [meV] 0.0 100 120 140 front gate depth from surface [nm] 0.2 overlap ( x ) V G1 0.4  bandedge [meV] 0.3 V G2 exchange wave function dencity 0.2 0.2 0.0 0.1 0.0 100 120 140 0.0 100 120 140 back gate depth from surface [nm] depth from surface [nm] 21 6/11/2015 Leonid Rokhinson, Purdue Univesity

  22. Structures with asymmetric doping 0.06 011414A 0.3 7x(5x1) 0.03 wafer #011414A 0.0 0.00 0 10 20 30 40 50 60 70 80 90 Layer number 0.06 011514A  bandedge [eV] 0.3 0.03 7x(2x1) wafer #011514A 0.0  0.00 0 10 20 30 40 50 60 70 80 90 Layer number 0.06 011614A 0.3 0.03 8x(3x1) 0.0 wafer #011614A 0.00 0 10 20 30 40 50 60 70 80 90 0.06 Layer number 011714A 0.3 0.03 6x(1x1) 0.0 wafer #011714A 0.00 0 10 20 30 40 50 60 70 80 90 75 100 125 150 175 Layer number x [nm] 22 6/11/2015 Leonid Rokhinson, Purdue Univesity

  23. Gate control of s-d exchange crossing 1   and    1.3% Mn B @ 18° T=400 mK #011414 (1 ↓) 10 1.0 2 ) V BG = 0 B @ 18° T=400 mK #011414 d023 R xy (h/e R xx (k  ) 18 (0 ↑) 5 0.5 16 14 0 0.0   1 (0 ↓) 12   2 10 150 R xx (k  )   8 6.0 100 2 6 R xx (k  )   3 4 4.8 50 V BG (Volts) 2 0 0 3.6 -2 V BG -50 -4 2.4 change of the overlap with density -6 2 -100 1 -8 1.8 1.2 -10 1.6 2 -150 E xc   1.4 4 5 6 7 8 9 log noralised overlap 0.0 1.2 -200 B (T) 5 6 7 8 9 1 E xc = const B (Tesla) 0.8 simulation: 5-12 simulation: 21-23 data: wafer #011414 E  1/ 0.6 x c * (V g )/B * (-200) vs  (V g )/  (-200) data: B 0.6 0.8 1 1.2 1.4 1.6 1.8 2 log normalized dencity 23 6/11/2015 Leonid Rokhinson, Purdue Univesity

  24. Gate control of the crossing 𝜉 = 2 V FG 0,3   2     > V BG 0,2 V top gate [V] 0.4  bandedge [meV] 0.3 wave function exchange 0,1 dencity 0.2 0.2   1 | 1 > 0.1 0.0  = 2 0,0 0.0 100 120 140 4 6 8 front gate depth from surface [nm] B [T] overlap 150 0,4      2  bandedge [meV] 0,3 exchange wave function  > dencity 0,2 0,2 V back gate [V] 100 0,1 0,0 0,0 100 120 140 back gate 50 depth from surface [nm]  = 2   1 |1,  > 0 4 6 8 B [T] 24 6/11/2015 Leonid Rokhinson, Purdue Univesity

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend