electrochemical processes and porous media mathematical
play

Electrochemical processes and porous media: mathematical and - PowerPoint PPT Presentation

Weierstrass Institute for Applied Analysis and Stochastics Electrochemical processes and porous media: mathematical and numerical modeling Jrgen Fuhrmann Alfonso Caiazzo, Klaus Grtner, Hartmut Langmach, Alexander Linke, Hong Zhao


  1. Weierstrass Institute for Applied Analysis and Stochastics Electrochemical processes and porous media: mathematical and numerical modeling Jürgen Fuhrmann Alfonso Caiazzo, Klaus Gärtner, Hartmut Langmach, Alexander Linke, Hong Zhao Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de RICAM Workshop · Linz · 2011-10-05

  2. Electrochemistry � Corrosion � Electroplating � Biological processes (heart beat etc.) � Batteries � Conversion of chemical energy stored in compounds within the cell into electrical energy � Different variants (low/high temperature, solid/liquid electrolyte ... ) � Fuel cells � Invented ≈ 1840 by Schönbein, Groves � Conversion of chemical energy stored in hydrogen, methanol, carbohydrates ... into electrical energy � Continuous supply of reactants, removal of products � Different variants (low/high temperature, solid/liquid electrolyte ... ) Electrochemistry and porous media · RICAM Workshop · Linz · 2011-10-05 · Page 2 (46)

  3. Polymer electrolyte fuel cell - membrane electrode assembly (MEA) Void space Polymer electrolyte Catalyst particles Porous matrix Electrochemistry and porous media · RICAM Workshop · Linz · 2011-10-05 · Page 3 (46)

  4. Polymer electrolyte fuel cell - membrane electrode assembly (MEA) Void space Anode channel Polymer electrolyte Porous layer Carbon fiber + teflon Reaction zone Carbon fiber + teflon + nafion + catalyst Nafion (proton conducting polymer) Membrane Carbon fiber + teflon + nafion + catalyst Reaction zone Porous layer Carbon fiber + teflon Catalyst particles Cathode channel Porous matrix Electrochemistry and porous media · RICAM Workshop · Linz · 2011-10-05 · Page 3 (46)

  5. Polymer electrolyte fuel cell - membrane electrode assembly (MEA) Hydrogen fuel cell ( H 2 -PEMFC) Void space H 2 Anode channel Polymer electrolyte Porous layer 2 H 2 → 4 H + + 4 e − Reaction zone Membrane Reaction zone Porous layer Catalyst particles Cathode channel Porous matrix Electrochemistry and porous media · RICAM Workshop · Linz · 2011-10-05 · Page 3 (46)

  6. Polymer electrolyte fuel cell - membrane electrode assembly (MEA) Hydrogen fuel cell ( H 2 -PEMFC) Void space H 2 Anode channel Polymer electrolyte Porous layer e − 2 H 2 → 4 H + + 4 e − Reaction zone – H + Membrane Load Reaction zone + e − Porous layer Catalyst particles Cathode channel Porous matrix Electrochemistry and porous media · RICAM Workshop · Linz · 2011-10-05 · Page 3 (46)

  7. Polymer electrolyte fuel cell - membrane electrode assembly (MEA) Hydrogen fuel cell ( H 2 -PEMFC) Void space H 2 Anode channel Polymer electrolyte Porous layer e − 2 H 2 → 4 H + + 4 e − Reaction zone – H + Membrane Load Reaction zone + e − Porous layer Catalyst particles Cathode channel O 2 , N 2 Porous matrix Electrochemistry and porous media · RICAM Workshop · Linz · 2011-10-05 · Page 3 (46)

  8. Polymer electrolyte fuel cell - membrane electrode assembly (MEA) Hydrogen fuel cell ( H 2 -PEMFC) Void space H 2 Anode channel Polymer electrolyte Porous layer e − 2 H 2 → 4 H + + 4 e − Reaction zone – H + Membrane Load 4 H + + 4 e − + O 2 → 2 H 2 O Reaction zone + e − Porous layer Catalyst particles Cathode channel O 2 , N 2 Porous matrix Electrochemistry and porous media · RICAM Workshop · Linz · 2011-10-05 · Page 3 (46)

  9. Polymer electrolyte fuel cell - membrane electrode assembly (MEA) Hydrogen fuel cell ( H 2 -PEMFC) Void space H 2 Anode channel Polymer electrolyte Porous layer e − 2 H 2 → 4 H + + 4 e − Reaction zone – H + Membrane Load 4 H + + 4 e − + O 2 → 2 H 2 O Reaction zone + e − Porous layer Catalyst particles Cathode channel O 2 , N 2 H 2 O , N 2 Porous matrix Electrochemistry and porous media · RICAM Workshop · Linz · 2011-10-05 · Page 3 (46)

  10. Polymer electrolyte fuel cell - membrane electrode assembly (MEA) Hydrogen fuel cell ( H 2 -PEMFC) Void space H 2 Anode channel Polymer electrolyte Porous layer e − 2 H 2 → 4 H + + 4 e − Reaction zone – H + Membrane Load 4 H + + 4 e − + O 2 → 2 H 2 O Reaction zone + e − Porous layer Catalyst particles Cathode channel O 2 , N 2 H 2 O , N 2 Porous matrix Overall reaction: 4 H 2 + O 2 → 2 H 2 O + energy Several MEA “sandwiches” combined into a stack. Electrochemistry and porous media · RICAM Workshop · Linz · 2011-10-05 · Page 3 (46)

  11. Polymer electrolyte fuel cell - membrane electrode assembly (MEA) Direct methanol fuel cell (DMFC) Void space CH 3 OH , H 2 O CO 2 Anode channel Polymer electrolyte Porous layer e − 2 CH 3 OH + 2 H 2 O → 2 CO 2 + 12 H + + 12 e − Reaction zone – H + Membrane Load 12 H + + 12 e − + 3 O 2 → 6 H 2 O Reaction zone + e − Porous layer Catalyst particles Cathode channel O 2 , N 2 H 2 O , N 2 Porous matrix Overall reaction: 2 CH 3 OH + 3 O 2 → 4 H 2 O + 2 CO 2 + energy Several MEA “sandwiches” combined into a stack. Electrochemistry and porous media · RICAM Workshop · Linz · 2011-10-05 · Page 3 (46)

  12. Some physical effects � Electrolyte flow (free/porous media) � Transport + diffusion of dissolved species � Charge transport in electric field � Electrostatic potential distribution � (multistep) Reactions with electron transfer � Intercalation, heat transport, swelling ... � Aging, ripening ... Simplifications: high velocity asymptotics, ideal mixing, lumped reactions General case: ⇒ numerical modeling J. Newman, K. Thomas-Aleya (2004):Electrochemical systems; A. Kulikovsky (2010): Analytical Fuel Cell Modeling Electrochemistry and porous media · RICAM Workshop · Linz · 2011-10-05 · Page 4 (46)

  13. Charge transport Charge transport is considered in electrodes and electrolytes. � Electrodes: � Solid (metal, carbon, semiconductor ... ) � Mostly electronic conductors: charge carriers are electrons ( e − ) � Electrolytes � Liquid or solid (aquatic solution, molten salt, polymer membranes) � Ionic conductors: electrons are blocked, charge carriers are ions of different type, e.g. protons ( H + ). � Mixed conductors show properties of both Electrochemistry and porous media · RICAM Workshop · Linz · 2011-10-05 · Page 5 (46)

  14. Charge transport: Nernst Planck Poisson system � Transport of i -th dissolved species ( i = 1 ... n ) due to diffusion, electromigration, advection in Variables dilute solution ⇒ Nernst-Planck equation : n number of species electromigration diffusion advection φ electrostatic potential � �� � � �� � ���� � N i = − z i u i Fc i ∇ φ − D i ∇ c i + c i � v c i species concentration ∂ t c i + ∇ · � � N i = j i N i molar flux z i charge u i mobility � Distribution of charged species D i diffusion coefficient ⇒ self-consistent electric field ε electrostatic permeability ⇒ Poisson equation : F Faraday constant j i Reaction n ∑ − ∇ · ε ∇ φ = F z i c i � v Substrate velocity i = 1 Electrochemistry and porous media · RICAM Workshop · Linz · 2011-10-05 · Page 6 (46)

  15. Assumptions behind Nernst-Planck Dilute solution theory: � Ignore interactions (collisions) between different dissolved species c i . Otherwise: Stefan-Maxwell terms, “concentrated solution theory” � Velocity field not influenced by moving ions. Otherwise: contribution to momentum balance � Fluid density not influenced by concentration changes Otherwise: variable density flow Special case: semiconductor device equations. Electrochemistry and porous media · RICAM Workshop · Linz · 2011-10-05 · Page 7 (46)

  16. Bulk electroneutrality � ε << F ⇒ electroneutrality in bulk (away from interfaces and boundaries) n ∑ z i c i = 0 i = 1 � Sum up equations multiplied by z i : � � � � n n n n n ∑ ∑ z 2 ∑ ∑ ∑ ∂ t − ∇ · i u i Fc i ∇ φ + z i D i ∇ c i + � = z i c i v z i c i z i j i i = 1 i = 1 i = 1 i = 1 i = 1 � Express e.g. c 1 : n ∑ z 1 D 1 c 1 = − D 1 z i c i i = 2 � No bulk reactions ⇒ � � n n Fz 2 ∑ ∑ ∇ · i u i c i ∇ φ + z i ( D i − D 1 ) ∇ c i = 0 i = 1 i = 2 � Equal diffusion coefficients or small concentration gradients ⇒ Ohm’s law : � � n ∑ z 2 ∇ · κ ∇ φ = 0 κ = F i u i c i : conductivity i = 1 Electrochemistry and porous media · RICAM Workshop · Linz · 2011-10-05 · Page 8 (46)

  17. Nernst Planck Ohm system Variables � Transport of i -th dissolved species ( i = 2 ... n ) due to diffusion, electromigration, advection in n number of species dilute solution φ electrostatic potential ⇒ Nernst-Planck equation : c i species concentration electromigration diffusion advection � N i molar flux � �� � � �� � ���� � N i = − z i u i Fc i ∇ φ − D i ∇ c i + c i � v z i charge ∂ t c i + ∇ · � N i = j i u i mobility D i diffusion coefficient κ conductivity � Self-consistent electric field from Ohm’s Law : F Faraday constant j i Reaction ∇ · κ ∇ φ = 0 � v Fluid velocity Electrochemistry and porous media · RICAM Workshop · Linz · 2011-10-05 · Page 9 (46)

  18. Special case: solid electrolyte/electrode c 1 : mobile charge carriers c 2 : immobile charges in solid lattice ( u 2 = D 2 = 0 ) � v = 0 ⇒ c 2 = const Electroneutrality , z 1 = − z 2 ⇒ c 1 = c 2 small ∇ c 2 ⇒ κ = z 2 1 u 1 Fc 1 � Electrodes (graphite, metal): c 1 ↔ free e − � Polymer electrolytes in fuel cells: c 1 ↔ free H + . Electrochemistry and porous media · RICAM Workshop · Linz · 2011-10-05 · Page 10 (46)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend