electrical conduction in carbon nanotubes
play

Electrical Conduction in Carbon Nanotubes T. Nakanishi (AIST) - PowerPoint PPT Presentation

1 ISSP International Summer School for Young Researchers on Quantum Transport in Mesoscopic Scale & Low Dimensions Aug. 13 - 21, 2003. (My talk is given at 16 Aug. 2003.) Electrical Conduction in Carbon Nanotubes T.


  1. 1 ISSP International Summer School for Young Researchers on “Quantum Transport in Mesoscopic Scale & Low Dimensions” Aug. 13 - 21, 2003. (My talk is given at 16 Aug. 2003.) ✓ ✏ Electrical Conduction in Carbon Nanotubes T. Nakanishi (AIST) ✒ ✑ 1. What is Carbon Nanotubes? Quasi-one dimensional system 2. Effective-Mass Scheme Electronic properties of carbon nanotubes 3. Impurity Scattering Ballistic transport (Absence of back-scattering for Slowly varying potential) ✓ ✏ 4. Point defects Collaborators 5. Topological defect Tsuneya Ando (TIT) Masatsura Igami (NISTEP) 6. Conclusion Riichiro Saito (Tohoku Univ.) ✒ ✑

  2. You are free to use these slides, if correctly credited to the source. T. Nakanishi (http://staff.aist.go.jp/t.nakanishi/index-e.html) 2 ✓ ✏ Carbon Nanotubes ✒ ✑ Single-wall Multi-wall Quantum wire growing naturally Electron micrographs of CN Diameter ∼ 4 nm S. Iijima, Nature 354, 56 (1991) 1D level spacing ∼ 0 . 8 eV Length ∼ 1 µm ○ Graphene with periodic Diameter 2 ∼ 30 nm boundary condition

  3. You are free to use these slides, if correctly credited to the source. T. Nakanishi (http://staff.aist.go.jp/t.nakanishi/index-e.html) 3 ✓ ✏ Graphite sheet (Graphene) ✒ ✑ First Brillouin Zone sp 2 covalent bonding A τ 1 single π band y’ τ 2 (m a ,m b ) τ 3 ✓ tight–binding model ✏ A B A x’ Nearest–neighbor Transfer Integral: γ 0 y (n a ,n b ) T x 3 − γ 0 l =1 ψ B ( R A − � τ l ) = εψ A ( R A ) , L � (0,0) η 3 − γ 0 l =1 ψ A ( R B + � τ l ) = εψ B ( R B ) . � b a ✒ ✑

  4. You are free to use these slides, if correctly credited to the source. T. Nakanishi (http://staff.aist.go.jp/t.nakanishi/index-e.html) 4 ✓ ✏ Graphite and Chiral Vector ✒ ✑ k y k y’ A η τ 1 y’ τ 2 (m a ,m b ) τ 3 K A B A K’ Armchair ( η = π /6) x’ k x η y k x’ K (n a ,n b ) T K’ Zigzag ( η =0) x L (0,0) η K’ K b a Chiral Vector:L = n a a + n b b ≡ ( n a , n b ) , n a 2 + n b 2 − n a n b . � L = | L | = a ( n a , n b ) = (2 , 1) m : armchair CN ( n a , n b ) = (1 , 0) m : zigzag CN ✓ ✏ n a + n b = 3 N + ν ν = 0 metallic CN ν = ± 1 semiconducting CN ✒ ✑

  5. You are free to use these slides, if correctly credited to the source. T. Nakanishi (http://staff.aist.go.jp/t.nakanishi/index-e.html) 5 ✓ ✏ Metallic and Semiconducting CN (Zigzag CN) ✒ ✑ k y’ =k y k y’ =k y k y’ =k y k x’ =k x k x’ =k x k x’ =k x K’ K Zigzag ( η =0) K’ K Zigzag ( η =0) K’ K Zigzag ( η =0) K 2 K 2 K 2 M M M K 1 K 1 K 1 Semiconductor Metal(Linear dispersion) Semiconductor 3 3 3 (n a ,n b )=(8,0) (n a ,n b )=(9,0) (n a ,n b )=(10,0) Energy (units of γ 0 ) 2 2 2 1 1 1 ✓ ✏ E F = 0 ✒ ✑ 0 0 0 -0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5 √ Wave Vector (units of 2 π/ 3 a )

  6. You are free to use these slides, if correctly credited to the source. T. Nakanishi (http://staff.aist.go.jp/t.nakanishi/index-e.html) 6 ✓ ✏ Effective-mass scheme ✒ ✑ √ K ′ =(2 π/a )(2 / 3 , 0) K =(2 π/a )(1 / 3 , 1 / 3) , A ( R A ) + e iη exp( i K ′ · R A ) F K ′  ψ A ( R A ) = exp( i K · R A ) F K A ( R A ) ,     ψ B ( R B ) = − ωe iη exp( i K · R B ) F K B ( R B ) + exp( i K ′ · R B ) F K ′ B ( R B ) ,     F K,K ′ A,B ( R A,B ) : Envelope Functions ω =exp(2 πi/ 3) ✓ tight–binding model ✏ 3 − γ 0 l =1 ψ B ( R A − � τ l ) = εψ A ( R A ) , � 3 − γ 0 l =1 ψ A ( R B + � τ l ) = εψ B ( R B ) . � ✒ ✑ τ l · ∂ F K,K ′ τ l ) = F K,K ′ F K,K ′ ( R A − � ( R A ) − � ( R A ) B B B ∂r l τ l · ∂ F K,K ′ τ l ) = F K,K ′ F K,K ′ ( R B − � ( R B ) − � ( R B ) A A A ∂r l k · p approximation

  7. You are free to use these slides, if correctly credited to the source. T. Nakanishi (http://staff.aist.go.jp/t.nakanishi/index-e.html) 7 ✓ ✏ Effective–Mass Equation ✒ ✑ Envelope Function: F K ( r ) k · p Hamiltonian  F A   ✓ K point ✏ K F K ( r ) =    F B   K γ (ˆ k x − i ˆ    F A  F A     0 k y ) K K ✓ K’ point ✏  = ε         γ (ˆ k x + i ˆ  F B   F B    k y ) 0    K K ✒ ✑ γ ( σ x ˆ k x − σ y ˆ k y ) F ′ K ( r ) = ε F ′ K ( r ) γ ( σ x ˆ k x + σ y ˆ k y ) F K ( r ) = ε F K ( r ) ✒ ✑ Periodic Boundary Weyl’s equation for neutrinos Condition in x direction √ Band Parameter: γ = 3 aγ 0 / 2 Transfer Integral: γ 0 ∼ 2 . 6 [eV] ∇ + e k = − i� ˆ h A c ¯

  8. You are free to use these slides, if correctly credited to the source. T. Nakanishi (http://staff.aist.go.jp/t.nakanishi/index-e.html) 8 ✓ ✏ Electronic States of CN’s ✒ ✑ Wave functions 1    b ν ( n, k y ) √ F K ( r ) =  exp [ iκ ν ( n ) x + ik y y ]     ± 1 2  b − ν ( n, k y ) ∗ 1   √ F K ′ ( r ) =  exp [ iκ − ν ( n ) x + ik y y ]     ± 1 2 with n a + n b = 3 N + ν b ν ( n, k y ) = κ ν ( n ) − ik y ✓ ✏ . κ ν ( n ) 2 + k 2 � y ν = 0 metallic CN Energy levels Linear dispersion κ ν ( n ) 2 + k 2 � ε ± ν ( n ) = ± γ y ε ± 0 (0) = ± γ | k y | Discritized wave number in ν = ± 1 semiconducting CN circumference direction k x = κ ν ( n ) = 2 π Band gap L ( n − ν/ 3) E g = 2 γ | κ ± 1 (0) | = 4 πγ Ajiki and Ando, J. Phys. Soc. Jpn.,62,1255 (1993) 3 L ✒ ✑

  9. You are free to use these slides, if correctly credited to the source. T. Nakanishi (http://staff.aist.go.jp/t.nakanishi/index-e.html) 9 ✓ ✏ Band Gap ✒ ✑ E g = 4 πγ 3 L Band Gap of Zigzag Nanotubes M. S. Dresselhaus, G. Dresselhaus and R. Saito, Sol. State Com., 84 , 201 (1992). H. Ajiki and T. Ando, J. Phys. Soc. Jpn.,62,1255 (1993).

  10. You are free to use these slides, if correctly credited to the source. T. Nakanishi (http://staff.aist.go.jp/t.nakanishi/index-e.html) 10 ✓ ✏ Effective–Potential T. Ando and T. Nakanishi, J. Phys. Soc. Jpn. 67 ,1704 (1998) ✒ ✑ ✓ ✏ Effective–Mass Equation √ 3 a 2 ( H 0 + V ) F = ε F u A = u A ( R A ) , ˜ � 2 R A √ γ (ˆ k x − i ˆ 3 a 2    F K  0 k y ) 0 0 A ( r ) u B = u B ( R B ) , ˜ �     γ (ˆ k x + i ˆ F K     k y ) 0 0 0 B ( r ) 2     R B     H 0 = , F = √     F K ′ γ (ˆ k x + i ˆ    A ( r )  3 a 2 0 0 0 k y )     e i ( K ′ − K ) · R A ˜ u ′     A = u A ( R A ) , �    F K ′  γ (ˆ k x − i ˆ B ( r )  0 0 k y ) 0    2 R A √ e iη u ′ 3 a 2  u A ( r ) 0 A ( r ) 0  e i ( K ′ − K ) · R B ˜ u ′ B = u B ( R B ) , �   − ω − 1 e − iη u ′ 0 u B ( r ) 0 B ( r )   2   R B V =     e − iη u ′ A ( r ) ∗ 0 u A ( r ) 0 √     3 a 2 / 2: Area of a Unit Cell   − ωe iη u ′ B ( r ) ∗  0 0 u B ( r )  ✓ ✏ Slowly-varying Potential ✒ ✑ Potential Range d ≪ Circumference L = | L | Potential Range d ≫ a u A ( r ) = u B ( r ) u A ( r ) = u A δ ( r − r 0 ) , u B ( r ) = u B δ ( r − r 0 ) , u ′ A ( r ) = u ′ B ( r ) = 0 u ′ A ( r ) = u ′ u ′ B ( r ) = u ′ A δ ( r − r 0 ) , B δ ( r − r 0 ) . ✒ ✑ r 0 : Impurity Position

  11. You are free to use these slides, if correctly credited to the source. T. Nakanishi (http://staff.aist.go.jp/t.nakanishi/index-e.html) 11 ✓ ✏ Right- and left-going channels ✒ ✑ ε ε (1) ✓ ✏ 1 � Solutions for V = 0 , | ε | < ε (1) = 2 πγ 0 ka/ π -1 -2/3 2/3 L (K’) (K)  F K 1     A ( r )  ∓ i F K ± = √  =  exp( iky ) ,      F K    B ( r ) 1 2 AL Metallic CN F K ′   1 A ( r )  ± i   F K ′ ± = √  =  exp( iky ) .   k y     F K ′   1   B ( r ) 2 AL  K Armchair ( η = π /6) A : Length of Nanotube k x + π /a M Energy: ε ( k )= ± γk +2 π /3a Group Velocity: v = ± γ/ ¯ h K’ Γ Right–going F K + , F K ′ + K 2     ±  -2 π /3a F K − , F K ′ − Left–going - π /a   K 1   ✒ ✑ ( n a , n b ) = (2 , 1) m armchair CN

  12. You are free to use these slides, if correctly credited to the source. T. Nakanishi (http://staff.aist.go.jp/t.nakanishi/index-e.html) 12 ✓ ✏ Lowest Born Approximation ✒ ✑ � Inter-valley Scattering � ± i 1 � d r  e iη u ′ 1     A ( r ) 0  i � V K ± K ′ + =     − ω − 1 e − iη u ′     0 B ( r ) 1 2 AL   � d r 1 ∓ e iη u ′ A ( r ) − ω − 1 e − iη u ′ � � = B ( r ) 2 AL 1 2 AL ( ∓ u ′ A e iη − ω − 1 e − iη u ′ B ) = V ∗ = K ′ ± K + � Intra-valley Scattering � d r � ± i 1 1      u A ( r ) 0  − i � V K ± K + =         0 u B ( r ) 1 2 AL   � d r {± u A ( r ) + u B ( r ) } 1 = 2 AL 1 = 2 AL ( ± u A + u B ) = V K ′ ± K ′ + ✓ ✏ Absence of back-scattering for slowly varying potential V K − K ′ + = V ∗ K ′ − K + = 0 , V K − K + = V K ′ − K ′ + ∝ u B − u A = 0 ✒ ✑

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend