elastic waves
play

ELASTIC WAVES and particulate materials J. Carlos Santamarina - PowerPoint PPT Presentation

Aussois 2012 ELASTIC WAVES and particulate materials J. Carlos Santamarina Georgia Institute of Technology References: Santamarina, J.C., in collaboration with Klein, K. and Fam, M. (2001). Soils and Waves, J. Wiley and Sons, Chichester, UK,


  1. In-plane directivity 60 Crosshole tomographic configuration 30 0 0 0 0.05 0.1 0.15 10 20 30 330 40 50 300 60 70 90

  2. Directivity 60 Base-to-borehole tomographic configuration 30 90 70 60 0 0 0.05 0.1 0.15 50 40 30 330 20 10 300 0

  3. Transverse directivity: Side lobe P-wave (specimen size) P-wave P-wave 100 S-wave 80 =0.45 =0.30 Cell radius [mm] 60 =0.15 40 =0.00 R 20 S-Wave H 0 0 20 40 60 80 100 P-Wave Tip-to-tip distance [mm]

  4. Input and output - Convolution Square, f r 4kHz Impulse Sine: f = 40kHz Sine: f = 12kHz Sine: f = 4kHz Sine: f = 1kHz Sine: f = 0.5kHz 0 1 2 3 Time [ms]

  5. Resonant frequency Experimental study Analytical formulation 2 1 . 875 t E f In Air 2 2 L 12 be 1 EI 2 4 2 1 . 875 2 V ( 1 ) L 1 s sl 3 L In Soil f 2 2 btL b L be sl

  6. Operating Frequency - Comparison Analytical Results Experimental Results   100 100 b Frequency [kHz] Frequency [kHz] L Vs=500m/s 10 10 Vs=160m/s In Air Vs=50m/s 1 1 0 2 4 6 8 10 12 0 2 4 6 8 10 12 Cantilever Length [mm] Cantilever Length [mm] Controlling parameter: Short cantilever length Bender element Long cantilever length Soil properties

  7. First arrival? Source Receiver A B C D A: First deflection B: First inflection C: Zero after first inflection D: Second inflection

  8. Multiple Reflection Goals: BE High R-boundaries  No P-wave from side walls  L No uncertainty in length  1 st event 2 nd event Soil No uncertainty in time  BE 1 1 st event Output [Normalized] 2 nd event 0 1 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Time [microsec]

  9. Experimental Study - Results Time difference b/w Cross Spectral Density 1 st and 2 nd event 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Time [ms] Source Receiver A B C D

  10. Near Field: Signal matching Mathematical Solution Cruse and Rizzo (1968) Stokoe and Sanchez-Salinero (1987) 1.5 1 Dotted line : Measured Procedure: Signal Matching Solid line: Signal Matching 0.5 For given values L and μ S-motion 0 1: Measure the signal S m 0.5 2: Estimate f r and V s 1 3: Compute predicted signal S p = f(V s , f r ) 1.5 0 0.1 0.2 0.3 0.4 0.5 Arrival Time [ms] 4: Change f r and V s until S p ~ S m

  11. Analytical Approach Measured signals Predicted signals 0 0 1 1 ’ increases 2 2 3 3 4 4 5 5 6 6 Meausred Signal Analytical Signal 7 7 8 8 9 9 10 ’ decreases 10 11 11 12 12 13 13 14 14 15 15 16 16 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 Time [microsec] Time [microsec]

  12. P-Transducer

  13. Ultrasound Transducer Electric cable Probe case Insulator Backing block Piezoelectric material Matching layer Damping dependent Heavy Intermediate Light

  14. Ultrasound Transducer Transducer (A3441):  GE Panametrics  Immersion type  To avoid z mismatch with water. High frequency (fr 500kHz)  Goals:   Assess homogeneity Layer detection Position objectives  (e.g., Transducers)

  15. 5.00 Directivity 4.00 3.00 2.00 1.00 Fixed axial distance 0.00 -40 -30 -20 -10 0 10 20 30 40 53.3mm 5.00 4.00 Source 3.00 2.00 1.00 0.00 5.00 -40 -30 -20 -10 0 10 20 30 40 4.00 3.00 25.4mm 2.00 1.00 0.00 -40 -30 -20 -10 0 10 20 30 40 25.4mm Receiver Transducer

  16. Directivity Fixed center-to-center distance (=25mm) 90 Source 120 60 150 30 180 0 0 0.5 1 Receiver

  17. Wave Parameters

  18. Velocity and Attenuation A e x 2 A 1 G V S 4 B G M 3 V P

  19. Mechanical Waves attenuation S-waves P-waves

  20. Mindlin contact: Inherently non-elastic (Fretting damage after 10000 cycles - steel) = 20 = 30 N P o P o =0.4N = 60 = 90 0.4 mm (Johnson, 1961)

  21. Photoelasticity and Thermal IR Imaging

  22. Photoelasticity and Thermal IR Imaging

  23. Thermo-mechanical coupling IR image Photoelastic image

  24. Atomic Force Microscopy (AFM) • Surface topography • Surface properties • Forces at nano- scale • Atomic-scale experiments

  25. Environmental chamber (A) and Isolation box Laser beam Photodector Tip radius: 20 nm Stiffness :0.58 N/m

  26. Results of AFM Test • Force curve Pull-out force • Approach 1 Dry, ambient, saturation 25 (6) Retraction (8) 50 (2) (1) (3) (5) 20 30 1 nN C nN 10 A nN 15 B 10 (7) D (9) (4) 30 0 50 100 150 200 nm 10 nm A B C D 1 5 50 Immersed in water 0 60 100 30 Average: 50 Relative humidity (%) nN nN 10 10 500 500 nm 30 0 50 100 150 200 nm nm

  27. Summary D = 0.008 – 0.018 Gravelly Soils D = 0.002 – 0.01 Sand Air-dry D = 0.003 – 0.021 Saturated D = 0.01 – 0.052 Clayey soils D = 0.009 – 0.054 Residual soils Peat (w g 200%) D 0.025

  28. The effect of frequency 3 G max G max 1Hz D min /D min 1Hz 2 D min D min 1Hz 1 G max /G max 1Hz 0 0.01 0.1 1 10 100 Loading Frequency, f, Hz (Stokoe et al.1999)

  29. Mechanical Waves attenuation S-waves P-waves

  30. 1: Effective Stress ’=1.4 ’=10.1 ’ increases ’=27.4 ’=62.1 ’=131.5 ’=270.3 ’=409.1 ’=603.9 ’=798.8 ’=1062.5 ’=798.8 ’=603.9 ’ decreases ’=409.1 ’=270.3 ’=131.5 ’=62.1 ’=27.4 ’=10.1 ’=1.4 [sec]

  31. 1: Effective Stress V log m s ' ' x y V = S ' 2 P log a kPa Very soft clays exponent 0.30 Sands 0.20 OC clays 0.10 = 0.36 - /700 Cemented soils 0. 100 200 -factor [m/s]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend