eigenvectors and eigenvalues repeated application
play

Eigenvectors and Eigenvalues Repeated application 1 1 0 0 A - PowerPoint PPT Presentation

Eigenvectors and Eigenvalues Repeated application 1 1 0 0 A = 1 0 0 0 0 2 1 0 0 1 0 0 A 2 n + 1 = A 2 n = 1 0 0 0 1 0 2 2 n + 1 2 2 n 0 0 0 0 General LA


  1. Eigenvectors and Eigenvalues

  2. Repeated application 1   1 0 0 A = − 1 0 0   0 0 2     1 0 0 1 0 0 A 2 n + 1 = A 2 n = − 1 0 0 0 1 0     2 2 n + 1 2 2 n 0 0 0 0

  3. General LA 2   − 9 14 4 A = − 2 3 0   − 18 22 9 A n =?

  4. General LA 3       − 9 14 4 2 2 3 2 0 0  = − 2 − 3 3 0 1 0 1 0 0      − 18 22 9 2 3 4 0 0 1   − 1 − 2 3 2 − 2 − 1   − 3 2 2

  5. General LA 4       − 9 14 4 2 2  = 2 3 0 − 2 1 1      − 18 22 9 2 2       − 9 14 4 2 2  = − 3 − 2 3 0 0 0      − 18 22 9 3 3       − 9 14 4 3 3  = 1 − 2 3 0 1 1      − 18 22 9 4 4

  6. Division of polynomials 5 Theorem Let a ( x ) and b ( x ) be polynomials such that b ( x ) � = 0 ( x ) , then there are quotient q ( x ) and remainder r ( x ) polynomials such that a ( x ) = q ( x ) b ( x ) + r ( x ) satisfying deg r ( x ) < deg b ( x ) .

  7. Corollaries 6 Corollary Let a ( x ) and b ( x ) = x − λ be polynomials, then a ( x ) = q ( x )( x − λ ) + a ( λ ) . Corollary a ( x ) has root λ if and only if x − λ divides a ( x ) .

  8. Fundamental Theorem of Algebra 7 Theorem Every non-constant polynomial with complex coefficients has at least one complex root.

  9. Eigenvalues and eigenvectors 8 Definition (eigenvalues and eigenvectors) Let A be a square matrix. A non-zero vector � u is an eigenvector for A if A � u = λ� u for some λ . The value λ is called eigenvalue for the eigenvector � u .

  10. Eigenvalues and eigenvectors 9 A � u = λ� u is A � u = λ I � u u = � ( A − λ I ) � 0 Want linearly dependent columns!

  11. Example 10 from       − 9 14 4 2 2  = 2 − 2 3 0 1 1      − 18 22 9 2 2 to       − 11 14 4 2 0  = − 2 − 2 3 1 0      − 18 22 7 2 0

  12. Example 11 from       − 9 14 4 2 2  = − 3 − 2 3 0 0 0      − 18 22 9 3 3 to       − 6 14 4 2 0  = − 2 3 3 0 0      − 18 22 12 3 0

  13. Example 12 from       − 9 14 4 3 3  = − 2 3 0 1 1      − 18 22 9 4 4 to       − 10 14 4 3 0  = − 1 − 2 3 1 0      − 18 22 8 4 0

  14. Goal 13 Given   · · · a 11 a 12 a 1 n a 21 a 22 a 2 n   A =  . .  ... . .   . .   a n 1 a n 2 · · · a nn are the columns of A linearly dependent.

  15. Computing Eigenvalues and Eigenvectors 14 1. compute the determinant of A − λ I 2. compute the roots λ 1 , . . . , λ n of the resulting polynomial, the n (possibly repeated) roots are the eigenvalues 3. for each eigenvalue i find the corresponding x = � eigenvectors by computing ( A − λ i I ) � 0

  16. Example 15   − 9 14 4 A = − 2 3 0   − 18 22 9 det( A − λ I ) = λ 3 − 7 λ + 6 = ( λ − 2 ) · ( λ − 1 ) · ( λ + 3 ) so λ 0 = 2 λ 1 = 1 λ 2 = − 3

  17. A − λ 0 I 16       − 9 − 11 14 4 1 0 0 14 4  − 2  = = 3 0 − 2 0 1 0 3 − 2 − 2     − 18 − 18 22 9 0 0 1 22 7 solve         − 11 14 4 0 2    | α ∈ C 3 − 2 − 2  � x = 0 ⇒  α 1     − 18 22 7 0 2 

  18. A − λ 1 I 17       − 9 − 10 14 4 1 0 0 14 4  − 1  = − 2 − 1 − 2 3 0 0 1 0 3     − 18 − 18 22 9 0 0 1 22 8 solve         − 10 14 4 0 3    | α ∈ C  � 3 − 1 − 2 x = 0 ⇒  α 1     − 18 22 8 0 4 

  19. A − λ 2 I 18       − 9 − 6 14 4 1 0 0 14 4  − ( − 3 )  = − 2 − 2 3 0 0 1 0 3 3     − 18 − 18 22 9 0 0 1 22 12 solve         − 6 14 4 0 2    | α ∈ C  � 3 3 − 2 x = 0 ⇒  α 0     − 18 22 12 0 3 

  20. Example 19 � 4 � − 5 A = 2 − 3 det( A − λ I ) = λ 2 − λ − 2 = ( λ − 2 ) · ( λ + 1 ) ◮ characteristic polynomial : λ 2 − λ − 2 ◮ characteristic equation : λ 2 − λ − 2 = 0 λ 0 = 2 λ 1 = − 1

  21. Example 20 � 4 � 1 � 2 � � � − 5 − 5 0 A − λ 0 I = − 2 = 2 − 3 0 1 2 − 5 solve � 2 � 0 � 5 � � � � � − 5 � x = ⇒ | α ∈ C α − 5 2 0 2

  22. Example 21 � 4 � 1 � 5 � � � − 5 − 5 0 A − λ 1 I = − ( − 1 ) = 2 − 3 0 1 2 − 2 solve � 5 � 0 � 1 � � � � � − 5 � x = ⇒ | α ∈ C α − 2 2 0 1

  23. Example double root 22 � 2 � 0 A = 0 2 det( A − λ I ) = λ 2 − 4 λ + 4 = ( λ − 2 ) 2 so λ 0 = 2 λ 1 = 2

  24. Example double root 23 � 2 � 1 � 0 � � � 0 0 0 A − λ 0 I = − 2 = 0 2 0 1 0 0 solve � 0 � 0 � 1 � 0 � � � � � � 0 � x = ⇒ α 0 + α 1 | α 0 , α 1 ∈ C 0 0 0 0 1

  25. Example double root again 24 � 2 � 0 A = 1 2 det( A − λ I ) = λ 2 − 4 λ + 4 = ( λ − 2 ) 2 so λ 0 = 2 λ 1 = 2

  26. Example 25 � 2 � 1 � 0 � � � 0 0 0 A − λ 0 I = − 2 = 1 2 0 1 1 0 solve � 0 � 0 � 0 � � � � � 0 � x = ⇒ α | α ∈ C 1 0 0 1

  27. Zero is an eigenvalue 26 � 4 � − 4 A = 2 − 2 det( A − λ I ) = λ 2 − 2 λ = ( λ − 2 ) · λ ◮ characteristic polynomial : λ 2 − 2 λ ◮ characteristic equation : λ 2 − 2 λ = 0 λ 0 = 2 λ 1 = 0

  28. Example 27 � 4 � 1 � 2 � � � − 4 − 4 0 A − λ 0 I = − 2 = 2 − 2 0 1 2 − 4 solve � 2 � 0 � 2 � � � � � − 4 � x = ⇒ | α ∈ C α − 4 2 0 1

  29. Example 28 � 4 � 1 � 4 � � � − 4 − 4 0 A − λ 1 I = − ( 0 ) = 2 − 2 0 1 2 − 2 solve � 4 � 0 � 1 � � � � � − 4 � x = ⇒ | α ∈ C α − 2 2 0 1

  30. Characteristic polynomial 29 Definition Let T ∈ M n × n . The characteristic polynomial of T is det ( T − λ I ) . The characteristic equation of T is det ( T − λ I ) = 0 . The characteristic polynomial of a linear transformation φ is the characteristic polynomial of any matrix representation R B → B ( φ )

  31. Existence 30 Theorem Let φ be any linear transformation on a non-trivial vector space. Then φ has at least one eigenvalue.

  32. Eigenspace 31 Definition The eigenspace of a transformation φ associated with the eigenvalue λ is � � � ζ | φ ( � ζ ) = λ� V λ = ζ . Theorem An eigenspace is a subspace.

  33. Algebraic vs geometric multiplicity 32 Theorem Let a linear transformation φ has a characteristic polynomials p ( λ ) = ( x − λ 1 ) m 1 ( x − λ 2 ) m 2 . . . ( x − λ k ) m k Then eigenvalue λ k has algebraic multiplicity m k and geometric multiplicity dim V λ k

  34. Linear independence 33 Theorem A set of eigenvectors, corresponding to distinct eigenvalues is linearly independent

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend