eigensolvers for large eigensolvers for large electronic
play

Eigensolvers for Large Eigensolvers for Large Electronic Structure - PowerPoint PPT Presentation

Eigensolvers for Large Eigensolvers for Large Electronic Structure Calculations Osni Marques ( OAM ( OAMarques@lbl.gov ) @lbl ) Acknowledgments: A. Canning, J. Dongarra, J. Langou, S. Tomov, C. Voemel and L.-W. Wang Introduction Photo


  1. Eigensolvers for Large Eigensolvers for Large Electronic Structure Calculations Osni Marques ( OAM ( OAMarques@lbl.gov ) @lbl ) Acknowledgments: A. Canning, J. Dongarra, J. Langou, S. Tomov, C. Voemel and L.-W. Wang

  2. Introduction Photo luminescence of semi-conducting materials: 1 1. Electrons in stable initial state El t i t bl i iti l t t 2. Energy ⇒ electron “jumps” to previously unoccupied energy level 3. Electron jumps back ⇒ light Electron jumps back ⇒ light 3 CdSe quantum dot (size) 12/15/2008 2 Eigensolvers for Large Electronic Structure Calculations

  3. Problem and Physical Interpretation Ψ = ε Ψ H Schrödinger Equation i i i = − 1 Δ Δ + + • Complex Hamiltonian • Complex Hamiltonian [ [ ] ] H H V V 2 • Δ is the kinetic energy term • V is the potential energy term p gy • Implicitly defined by matrix-vector product (via FFT) ε • Real eigenvalue i • Discrete energy level • Can be occupied by electron or unoccupied • Clustered multiplicities Clustered, multiplicities Ψ • Complex eigenvector i • Profile gives probability of finding electron at spatial location 12/15/2008 3 Eigensolvers for Large Electronic Structure Calculations

  4. Simulation Code: ESCAN (Energy SCAN) • Solves single particle problem ( density functional theory ) g p p ( y ) y f • Semi-empirical potential • Non-selfconsistent calculations • Plane waves for larger systems • Plane-waves for larger systems • Optical of electronic properties of interest • Interior eigenvalue problem • Folded spectrum method • For more info, contact Lin-Wang Wang ( lwwang@lbl.gov ) , g g ( ) g@ g 12/15/2008 4 Eigensolvers for Large Electronic Structure Calculations

  5. Spectral Transformations • Shift-invert Rayleigh quotient 1 w ρ − − 1 ([ ( ] , ) ) H e I ref • Folded spectrum 2 w ρ − ([ ] , ) H e I ref • • Harmonic Rayleigh quotient Harmonic Rayleigh quotient − * [ ] w H e I w ρ = ( ) ref w * − 2 [ [ ref ] ] w w H H e e I I w w f 12/15/2008 5 Eigensolvers for Large Electronic Structure Calculations

  6. ESCAN: Folded Spectrum Approach 1 1 − ∇ ∇ + ψ = ε ψ 2 2 [ [ ( ( )] )] ( ( ) ) ( ( ) ) V V r r r i i i 2 ψ = ε ψ − ε ψ = ε − ε ψ 2 2 ( ) ( ) H H ref I i i i i i ref i Lowest 200 eigenstates of a CdSe system ( n=4241 ), ε ref =-5.0 M 47 -6.85525E+00 48 -6.85525E+00 49 49 -6.70916E+00 6 70916 00 50 -6.56302E+00 51 -6.38244E+00 52 -6.38244E+00 53 -2.11151E+00 54 -1.28873E+00 55 55 9.98501E 01 -9 98501E-01 56 -8.93434E-01 57 -8.93433E-01 58 -7.61729E-01 M 12/15/2008 6 Eigensolvers for Large Electronic Structure Calculations

  7. Eigensolvers of Choice Algorithm Details Parameters Banded PCG Conjugate-Gradient (CG)-based nline Rayleigh-Quotient Minimization; i implemented by Wang and Zunger. l d b W d Z PARPACK Implicit restarted Arnoldi (IRA); ncv implemented by Lehoucq, Maschoff, Sorensen and Yang Sorensen and Yang. LOBPCG Locally Optimal Block-Preconditioned - CG; based on A. Knyazev. PRIMME PRIMME Jacobi-Davidson, Preconditioned Jacobi Davidson Preconditioned max basis size max basis size Iterative Multimethod Eigensolver; min restart size max block size implemented by A. Stathopoulos and J. max prev retain Combs. max inner iterations i it ti • • • → → − − ε ε 2 − − ε ε − − ε ε 2 ψ ψ PRIMME PRIMME on on [( [( ) ) ( ( ) ) ] ] tol tol H H ref I I i ref i 12/15/2008 7 Eigensolvers for Large Electronic Structure Calculations

  8. Banded PCG / LOBPCG * Hx x x Hx = ( ) f x * x x * x Hx ∇ ∇ = − = ( ( ) ) ( ( ) ) ( ( ) ) f f x x Hx Hx x x r r x x * x x nline iterations of nonlinear CG it ti f li CG li CdSe system ( n=4241 ), ε ref =-4.25, 30 line minimizations per iteration iteration iteration line minimizations line minimizations 1 30-30-30-30-30-30-30-30 2 30-30-30-30-30-30-30-30 10 26-23-1-30-30-30-30-30 15 1-1-1-1-30-30-30-30 20 1-1-1-1-1-30-30-30 25 1-1-1-1-1-1-1-30 30 30 1-1-1-1-1-1-1-30 1 1 1 1 1 1 1 30 12/15/2008 8 Eigensolvers for Large Electronic Structure Calculations

  9. Arnoldi with Implicit Restarts = j − 1 1 Krylov Subspace : ( , , ) ( , , ) K j K A q j span q Aq A q 1 1 1 1 Arnoldi factorization at step k + p . QR iteration on H with “special” shifts to promote convergence to • the k eigenvalues with largest real part, or • the k eigenvalues with largest magnitude, or • the k eigenvalues with smallest real part, or • the k eigenvalues with smallest magnitude becomes non zero After discarding the last p columns, the final set represents a length k Arnoldi factorization. 12/15/2008 9 Eigensolvers for Large Electronic Structure Calculations

  10. Davidson / Jacobi-Davidson = = (re)starting vector [ ], 1 V v v (2) … ] 1 1 1 (1) v 1 block strategy: V 1 =[v 1 = 1 , 2 , for L j p = a) T projection into subspace W V AV j j j ˆ = θ ˆ ˆ b) solve W y y j ˆ ˆ θ ˆ c) ( , ) choose min or max eigenvalue/eigenvector y j j = ˆ ˆ d) x V y Ritz vector j j j ˆ = θ θ − ˆ ˆ e) ) ( ( ) ) r I I A A x residual vector j j j ≤ • preconditioning of an auxiliary problem f) , if tol stop r j • depends on diagonal dominancy ˆ = θ θ − − 1 1 g) ) ( ( ( ( )) )) = θ θ − ( 1 ( ( ( )) )) • may be ill conditioned b ill diti d t t I I diag di A A r P P I I diag diag A A j j j • Jacobi-Davidson solves approximately ⇒ = h) [ ] , T V t V V V I ˆ − − θ − = − ˆ ˆ T ˆ ˆ T + + + ( )( )( ) 1 1 1 I x x A I I x x t r j j j j j j j j j j j j e d end for o ( y Q (by QMR for example) p ) 12/15/2008 10 Eigensolvers for Large Electronic Structure Calculations

  11. Test Cases IBM SP3, 16 , processors System atoms n time matvec (s) Cd20Se19 39 11,331 0.005 (1.0) Cd83Se81 164 34,143 0.014 (2.8) Cd232Se235 467 75,645 0.043 (8.6) Cd534S 527 Cd534Se527 1071 1071 141 625 141,625 0 105 0.105 (21.) • neig = 10 • tol =10 -6 ε ref = − 4.8eV • = + − ∇ + − ε 1 2 2 • diagonal preconditioner: ( ( ) / ) P I V E 2 avg ref k • IBM SP5 (8 to 32 processors) 12/15/2008 11 Eigensolvers for Large Electronic Structure Calculations

  12. Cd20Se19 ( n=11331, 8 procs ) F ld d S Folded Spectrum ALGORITHM nline basis size rest. size prev. ret. inner iter. matvecs time (s) PCG 100 - - - - 4956 9.4 LOBPCG LOBPCG - - - - - 4756 4756 19 3 19.3 PARPACK - 20 - - - 14630 27.2 PARPACK - 25 - - - 9712 18.1 PARPACK - 30 - - - 7474 14.1 PARPACK PARPACK - 35 35 - - - 5838 5838 11 1 11.1 PRIMME JDQMR - 16 8 1 - 8546 14.6 PRIMME MIN_MATVECS - 16 8 2 0 1750 3.9 PRIMME MIN_TIME - 16 8 1 -1 4720 8.0 eigenvalues eigenvalues PARPACK PARPACK PRIMME JDQMR: -6.19176 -6.43238 • adaptive stopping criterion for inner QMR -6.19176 -6.43238 PRIMME MIN_MATVECS: currently GD_Olsen_plusk -6.34729 -6.60944 • GD+k GD+k -6.38668 -6.60945 -6.43238 -6.71546 • preconditioner applied to ( r + ε x ) -6.43238 -6.71546 PRIMME MIN_TIME: currently JDQMR_Etol -6.60944 -6.88809 • JDQMR -6.60945 -6.91577 • stops after resid reduces by a 0.1 factor f id d b 0 1 f -6.71546 6 71546 -6.98363 6 98363 -6.71546 -7.08253 12/15/2008 12 Eigensolvers for Large Electronic Structure Calculations

  13. Cd20Se19 ( n=11331, 8 procs ) Folded Spectrum 16000 30 14000 25 12000 20 10000 matvecs 8000 15 time 6000 10 4000 5 2000 0 0 G G R K K K K E S C C C C C C M M C P P A A A A Q E I T B P P P P V D _ O R R R R T J N A A A A L A I E P P P P M M M _ E M M N N M M I I I I R R M M P I E R M P M I R P 12/15/2008 13 Eigensolvers for Large Electronic Structure Calculations

  14. Cd20Se19 ( n=11331, 8 procs ) Unfolded Spectrum ALGORITHM nline basis size rest. size prev. ret. inner iter. matvecs time (s) PARPACK - 20 - - - **** **** PARPACK - 25 - - - 1326 2.9 PARPACK - 30 - - - 1310 2.9 1293 2.9 PARPACK - 35 - - - PRIMME MIN_MATVECS - 16 8 2 0 4185 10.0 3350 3350 7 0 7.0 PRIMME MIN_TIME - 16 8 1 0 eigenvalues PARPACK Implicit restarted Lanczos is (surprisingly) fast but (as in the -6.19176 -6.19176 folded spectrum) misses some eigenvalues. p ) g -6.19176 6.19176 -6.34729 6.34729 -6.34729 -6.38668 -6.38668 -6.43238 -6.43238 -6.43238 -6.43238 -6.60944 -6.60945 -6.60945 -6.60945 -6.71546 -6.71546 -6.71546 -6.71546 -6.88809 12/15/2008 14 Eigensolvers for Large Electronic Structure Calculations

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend