eftcamb exploring large scale structure observables with
play

EFTCAMB: exploring Large Scale Structure observables with viable - PowerPoint PPT Presentation

EFTCAMB: exploring Large Scale Structure observables with viable dark energy and modified gravity models Noemi Frusciante Instituto de Astrof sica e Ci encias do Espa co, Faculdade de Ci encias da Universidade de Lisboa, Portugal


  1. EFTCAMB: exploring Large Scale Structure observables with viable dark energy and modified gravity models Noemi Frusciante Instituto de Astrof´ ısica e Ciˆ encias do Espa¸ co, Faculdade de Ciˆ encias da Universidade de Lisboa, Portugal 9th Feb 2018, GC2018, YITP, Kyoto Univ.

  2. Test gravity on cosmological scales • Observations: extra component → Dark Energy • Pletora of Dark Energy & Modified Gravity models • focus on models with one extra scalar DoF Model independent parametrizations to test gravity: • Growth functions: µ and γ , [Silvestri et al. PRD 87, 104015 (2013)] • Parametrized Post Friedmann framework, [Baker et al. , PRD 87, 024015 (2013)] • Effective Field Theory of Cosmic Acceleration, [Gubitosi et al. JCAP 1302 (2013) 032 Bloomfield et al. JCAP 1308 (2013) 010] • Horndeski and beyond parametrizations , [Bellini & Sawicki, JCAP 1407 (2014) 050 Gleyzes et al. JCAP 1502 (2015) 018 NF et al. JCAP 1607 (2016) no.07, 018 ] { µ, γ } , Horndeski and bH ⇒ EFT

  3. EFT for dark energy and modified gravity: the action • Operators are time-dependent spatial diffeomorphisms invariants; • Unitary gauge: the extra scalar d.o.f. does not appear directly; The action: d 4 x √− g � m 2 � 2 (1 + Ω( t )) R + Λ( t ) − c ( t ) δ g 00 0 S EFT = ¯ ¯ + M 4 M 3 M 2 2 ( t ) 1 ( t ) 2 ( t ) ( δ g 00 ) 2 − δ g 00 δ K − ( δ K ) 2 2 2 2 � ¯ ˆ M 2 M 2 ( t ) 3 ( t ) δ K µ ν δ K ν δ g 00 δ R + m 2 2 ( t ) h µν ∂ µ g 00 ∂ ν g 00 − µ + + S m [ χ i , g µν ] , 2 2 where e.g. δ A = A − A (0) , A (0) background value in FLRW M 2 and m 2 2 = − ¯ 3 = 2 ˆ • M 2 M 2 2 = 0: Horndeski (and all the models belonging to them); 2 + ¯ • M 2 M 2 3 = 0 and m 2 2 = 0 : Beyond Horndeski class of models; • m 2 2 � = 0: Lorentz violating theories (e.g. low-energy Hoˇ rava gravity).

  4. Extensions • Additional linear operators m 5 ( t ) ¯ λ 1 ( t )( δ R ) 2 , λ 2 ( t ) δ R µ ν δ R ν δ R δ K , µ , 2 λ 3 ( t ) δ R h µν ∇ µ ∂ ν g 00 , λ 4 ( t ) h µν ∂ µ g 00 ∇ 2 ∂ ν g 00 , λ 6 ( t ) h µν ∇ µ R ij ∇ ν R ij , λ 5 ( t ) h µν ∇ µ R∇ ν R , λ 7 ( t ) h µν ∂ µ g 00 ∇ 4 ∂ ν g 00 , λ 8 ( t ) h µν ∇ 2 R∇ µ ∂ ν g 00 [J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, JCAP 1308, 025 (2013) NF, G. Papadomanolakis and A. Silvestri, JCAP 1607 (2016) no.07, 018 ] • beyond the linear order 3 ( t )( δ g 00 ) 3 , M 1 ( t )( δ K ) 3 , M 4 M 3 1 ( t )( δ g 00 ) 2 δ K , 4 ( t ) δ g 00 ( δ K ) 2 , M 2 M 2 5 ( t )( δ g 00 ) 2 δ R , M 2 6 ( t ) δ g 00 δ K µ ν δ K ν µ , µ δ K µ M 4 ( t ) δ g 00 δ R δ K , M 2 ( t ) δ K ν λ δ K λ M 3 ( t ) δ K δ K ν µ δ K µ ν , ν M 5 ( t ) δ g 00 δ K µ ν δ R ν m 2 3 ( t ) h µν ( ∂ µ g 00 ∂ ν g 00 ) δ g 00 µ , [ NF, G. Papadomanolakis, JCAP 1712 (2017) no.12, 014 ]

  5. General Mapping Let us introduce the ADM metric: ds 2 = − N 2 dt 2 + h ij ( dx i + N i dt )( dx j + N j dt ) , a general Lagrangian can be written as follows: L = L ( N , R , S , K , Z , U , Z 1 , Z 2 , α 1 , α 2 , α 3 , α 4 , α 5 ; t ) , where S = K µν K µν , Z = R µν R µν , U = R µν K µν , Z 1 = ∇ i R∇ i R , Z 2 = ∇ i R jk ∇ i R jk , α 1 = a i a i , α 2 = a i ∆ a i , α 3 = R∇ i a i , α 4 = a i ∆ 2 a i , α 5 = ∆ R∇ i a i , [R. Kase and S. Tsujikawa, Int. J. Mod. Phys. D 23 , no. 13, 1443008 (2015)] d 4 x √− gL in unitary gauge and expand it • Write the general action � up to second order in perturbations; • Write the EFT action in ADM notation; • Compare the two actions.

  6. General Mapping Ω( t ) = 2 c ( t ) = 1 E − 2 E ˙ 2( ˙ F − L N ) + ( H ˙ E − ¨ E − 1 , H ) , m 2 0 Λ( t ) = ¯ L + ˙ F + 3 H F − (6 H 2 E + 2 ¨ E + 4 H ˙ E + 4 ˙ ¯ M 2 H E ) , 2 ( t ) = −A − 2 E , 2 ( t ) = 1 � L N + L NN � − c ¯ 1 ( t ) = −B − 2 ˙ ¯ M 4 M 3 M 2 2 , E , 3 ( t ) = − 2 L S + 2 E , 2 2 λ 1 ( t ) = G 2 ( t ) = L α 1 ˆ m 2 M 2 ( t ) = D , 4 , m 5 ( t ) = 2 C , ¯ 2 , λ 3 ( t ) = L α 3 λ 4 ( t ) = L α 2 λ 2 ( t ) = L Z , λ 5 ( t ) = L Z 1 , 2 , 4 , λ 7 ( t ) = L α 4 λ 8 ( t ) = L α 5 λ 6 ( t ) = L Z 2 , 4 , 2 . where A , B , C , D , E , F , G are combinations of terms obtained by deriving the Lagrangian w.r.t. the main variables. [NF, G. Papadomanolakis and A. Silvestri, JCAP 1607 (2016) no.07, 018 ]

  7. Example: Minimally coupled quintessence The action with the scalar field φ : � m 2 d 4 x √− g 2 R − 1 � � 0 2 ∂ ν φ∂ ν φ − V ( φ ) S φ = , Apply unitary gauge and ADM formalism ⇓ � ˙ � d 4 x √− g m 2 φ 2 � + 1 0 ( t ) 0 R + S − K 2 � � S φ = − V ( φ 0 ) , N 2 2 2 Apply the general mapping recipe ⇓ ˙ ˙ φ 2 φ 2 0 0 Ω( t ) = 0 , c ( t ) = 2 , Λ( t ) = 2 − V ( φ 0 ) . [NF, G. Papadomanolakis and A. Silvestri, JCAP 1607 (2016) no.07, 018 ]

  8. Stability conditions Let us consider the following second order action for more than one scalar fields 1 � S (2) = d 3 kdta 3 � � χ t A ˙ ˙ χ − ˙ χ − k 2 � χ t G � χ t B � χ t M � � � � χ − � χ , (2 π ) 3 χ t = ( φ 1 , φ 2 , ... ) . where � In order to avoid instabilities one has to demand: • no-Ghost condition: positive kinetic term; • no-Gradient condition: c 2 s , i > 0 , • no-tachyonic instability: assure the Hamiltonian to be bounded from below, then, we demand | µ i ( t , 0) | � H 2 . [A. De Felice, NF and G. Papadomanolakis, JCAP 1703 (2017) no.03, 027 ]

  9. Stability conditions for the tensor modes The EFT action for tensor modes can be written as ij ) 2 − c 2 1 � d 3 kdt a 3 A T ( t ) � T ( t , k ) � S T (2) (˙ h T k 2 ( h T ij ) 2 EFT = , (2 π ) 3 a 2 8 with A T ( t ) = m 2 0 (1 + Ω) − ¯ M 2 3 , λ 2 k 2 a 2 + λ 6 k 4 c 2 c 2 a 4 T ( t , k ) = ¯ T ( t ) − 8 , 0 (1 + Ω) − ¯ m 2 M 2 3 m 2 0 (1 + Ω) c 2 ¯ T ( t ) = , 0 (1 + Ω) − ¯ m 2 M 2 3 Stability conditions • no-Ghost instability: A T > 0, • No gradient instability: positive speed of propagation c 2 T > 0. [NF, G. Papadomanolakis and A. Silvestri, JCAP 1607 (2016) no.07, 018 ]

  10. The parameters space Matter fields: • in general do not affect the no-ghost and speed conditions, • only one exception: beyond Horndeski. In matter the speeds of propagation of the three DoFs are: c 2 s , d = 0 , (3 c 2 c 2 s ( F 3 F 2 1 + 3 F 2 2 F 1 ) − 2 a 2 F 2 − 4 B 2 2 � � � � s − 1) ρ r ρ d 2 G 11 12 F 2 − 16 c 2 s B 2 13 F 2 2 ρ d = 0 for Horndeski: they completely decouple. • they change the no-tachyonic conditions. [(in vacuum) NF, G. Papadomanolakis and A. Silvestri, JCAP 1607 (2016) no.07, 018 (in matter) A. De Felice, NF, G. Papadomanolakis, JCAP 1703 (2017) no.03, 027]

  11. EFTCAMB website: http://www.eftcamb.org/ B. Hu, M. Raveri, NF, A. Silvestri, PRD 89 (2014) 103530, M. Raveri, B. Hu, NF, A. Silvestri, PRD 90 (2014) 043513

  12. EFTCAMB & EFTCosmoMC • EFTCAMB evolves the full scalar and tensor perturbative equations without relying on QSA; • EFTCAMB is compatible with massive neutrinos; • Built-in models: designer-f(R), minimally couple quintessence, low-energy Hoˇ rava gravity, Covariant Galileon, f(R)- Hu & Sawicki (soon), Reparametrized Horndeski (RPH); • Built-in: several choices for EFT functions & w DE ( a ); • Built-in: Stability requirements → viability priors for EFTCosmoMC; • EFTCosmoMC: exploration of the parameter space performing comparison with several cosmological data sets; • Validated with other EB codes, agreement at sub-percent level [Bellini et al., Phys.Rev. D97 (2018) no.2, 023520]

  13. The threefold face of EFTCAMB Model Background Mapping Perturbations PURE EFT ✓ ✓ / ✗ ✓ FULL MAPPING ✓ / ✗ ✓ / ✗ ✓ Other Parametrizations ✓ / ✗ ✓ / ✗ ✓ Built-in: ✓ ; To be implemented: ✗ . Numerical Notes: B. Hu, M. Raveri, NF, A. Silvestri, arXiv:1405.3590[astro-ph.IM]

  14. Constraining power of viability conditions -0.5 -0.80 -0.6 -0.996 -0.85 -0.997 -0.8 -0.90 -0.998 -1.0 -0.95 -0.999 -1.2 -1.00 -1.000 -1.4 -1.05 -1.5 -1.001 -0.5 -0.3 -0.1 0.0 0.1 0.3 0.5 -0.025 0.0 0.025 0.05 0.075 -4.5 -3.5 -2.75 -2.0 -1.0 Designer f(R) on wCDM: • w 0 ∈ ( − 1 , − 0 . 94) 95% C . L . Planck+WP+BAO , • w 0 ∈ ( − 1 , − 0 . 9997) 95% C . L . Planck+WP+BAO+lensing . [M. Raveri, B. Hu, NF, A. Silvestri, PRD 90 (2014) 4, 043513 ]

  15. After GW170817 Horndeski action reduces to d 4 x √− g [ K ( φ, X ) + G 3 ( φ, X ) � φ + G 4 ( φ ) R ] , � S rH = [P. Creminelli and F. Vernizzi, Phys. Rev. Lett. 119, 251302 (2017) ] In terms of EFT functions we only have: Ω, ¯ M 3 1 , M 4 2 0.8 γ 0 1 = 0 . 1 M2 0.8 γ 0 1 = − 0 . 1 γ 0 1 = 0 0.4 Unstable 0.6 | ∆ C TT | w a ℓ σ ℓ 0 0.4 -0.4 0.2 -0.8 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 10 1 10 2 w 0 ℓ IF ¯ M 3 1 � = 0 → M 4 2 � = 0 [In preparation: NF, S. Peirone, N. Lima, S. Cansas]

  16. Can we trust quasi static approximation? QS approximation: 1 + M 2 ( a ) a 2 1 + g 2 ( a ) + M 2 ( a ) a 2 1 1 k 2 k 2 µ ( a , k ) = , Σ( a , k ) = . g 1 ( a ) + M 2 ( a ) a 2 g 1 ( a ) + M 2 ( a ) a 2 1 + Ω 2(1 + Ω) k 2 k 2 [In preparation: NF, S. Peirone, N. Lima, S. Cansas]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend