ee e6820 speech audio processing recognition lecture 2
play

EE E6820: Speech & Audio Processing & Recognition Lecture 2: - PowerPoint PPT Presentation

EE E6820: Speech & Audio Processing & Recognition Lecture 2: Acoustics 1 The wave equation 2 Acoustic tubes: reflections & resonance 3 Oscillations & musical acoustics 4 Spherical waves & room acoustics Dan Ellis


  1. EE E6820: Speech & Audio Processing & Recognition Lecture 2: Acoustics 1 The wave equation 2 Acoustic tubes: reflections & resonance 3 Oscillations & musical acoustics 4 Spherical waves & room acoustics Dan Ellis <dpwe@ee.columbia.edu> http://www.ee.columbia.edu/~dpwe/e6820/ Columbia University Dept. of Electrical Engineering Spring 2002 E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 1

  2. Acoustics & sound 1 • Acoustics is the study of physical waves • (Acoustic) waves transmit energy without permanently displacing matter (e.g. ocean waves) • Same math recurs in many domains • Intuition: pulse going down a rope E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 2

  3. The wave equation • Consider a small section of the rope: y S φ 2 ε x φ 1 S ε • displacement is y(x), tension S, mass ·dx ⋅ ( φ 2 ) ⋅ ( φ 1 ) → F y = S sin – S sin lateral force is 2 ∂ y ⋅ ⋅ = S d x x 2 ∂ E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 3

  4. Wave equation (2) F = ma • Newton’s law: 2 2 ∂ y ∂ y ⋅ ⋅ ε x ⋅ S d x = d x 2 t 2 ∂ ∂ c 2 S ε ⁄ = • Call (tension to mass-per-length) hence the wave equation : 2 2 ∂ y ∂ y c 2 ⋅ = x 2 t 2 ∂ ∂ .. partial DE relating curvature and acceleration E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 4

  5. Solution to the wave equation ( , ) ( ) y x t = f x – ct • If then ∂ y ∂ y ( ) ⋅ ( ) = f ' x – ct = – c f ' x – ct ∂ ∂ x t 2 2 ∂ y ∂ y c 2 ( ) ⋅ ( ) = f '' x – ct = f '' x – ct x 2 t 2 ∂ ∂ ( , ) ( ) y x t = f x + ct also works for Hence, general solution: 2 2 ∂ y ∂ y c 2 ⋅ = x 2 t 2 ∂ ∂ y + x y – x ⇒ ( , ) ( ) ( ) y x t = – ct + + ct E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 5

  6. Solution to the wave equation (2) y + x y – x ( ) ( ) – ct + ct • and are travelling waves - shape stays constant but changes position: y y+ time 0: y- x ∆ x = c·T y+ time T: y- c is travelling wave velocity ( ∆ x / ∆ t ) • y + moves right, y – moves left • • resultant y(x) is sum of the two waves E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 6

  7. Wave equation solutions (3) What is the form of y + , y – ? • - any doubly-differentiable function will satisfy wave equation • Actual waveshapes dictated by boundary conditions - y(x) at t = 0 - constraints on y at particular x’s e.g. input motion y(0, t) = m(t) rigid termination y(L, t) = 0 y y(0,t) = m(t) x y + (x,t) y(L,t) = 0 E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 7

  8. Terminations and reflections • System constraints: - initial y(x, 0) = 0 (flat rope) - input y(0, t) = m(t) (at agent’s hand) ( → y + ) - termination y(L, t) = 0 (fixed end) - wave equation y(x,t) = y + (x - ct) + y – (x + ct) • At termination: y(L, t) = 0 → y + (L - ct) = – y – (L + ct) i.e. y + and y – are mirrored in time and amplitude around x=L → inverted reflection at termination y+ y(x,t) = y+ + y– y– x = L → simulation [travel1.m] E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 8

  9. Acoustic tubes 2 • Sound waves travel down acoustic tubes: pressure x - 1-dimensional; very similar to strings • Common situation: - wind instrument bores - ear canal - vocal tract E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 9

  10. Pressure and velocity ξ x t ( , ) • Consider air particle displacement : ξ ( x ) x ∂ξ ( , ) v x t = • Particle velocity ∂ t ( , ) ⋅ ( , ) u x t = A v x t hence volume velocity ∂ξ 1 ( , ) ⋅ p x t = – - - - • Air pressure ∂ κ x E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 10

  11. Wave equation for a tube • Consider elemental volume: Area dA Force p·dA Force ( p+ ∂ p/ ∂ x·dx ) ·dA x Volume dA·dx Mass ρ ·dA·dx F = ma • Newton’s law: ∂ p ∂ v ⋅ ⋅ ρ dAdx ⋅ – dx dA = ∂ ∂ t x ∂ p ∂ v ⇒ ρ t = – ∂ ∂ x 2 2 ∂ ξ ∂ ξ 1 c 2 ⋅ = c = - - - - - - - - - - - • Hence ρκ x 2 t 2 ∂ ∂ E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 11

  12. Acoustic tube traveling waves • Traveling waves in particle displacement: ξ + x ξ - x ξ x t ( , ) ( ) ( ) = – ct + + ct u + α ∂ ξ + α ( ) cA α ( ) = – • Call ∂ ρ c Z 0 = - - - - - - A • Then pressure: ∂ξ u + x u - x 1 ( , ) ⋅ ⋅ [ ( ) ( ) ] p x t = – - - - = Z 0 – ct + + ct κ ∂ x • Volume velocity: ∂ξ u + x u - x ( , ) ⋅ ( ) ( ) u x t = A = – ct – + ct ∂ t • (Scaled) sum and difference of traveling waves E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 12

  13. Acoustic tube traveling waves (2) • Different residuals for pressure and vol. veloc.: Acoustic tube x c u+ c u- u(x,t) = u+ - u- p(x,t) = Z 0 [u+ + u-] E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 13

  14. Terminations in tubes • Equivalent of ‘fixed point’ for tubes? Solid wall forces hence u+ = u- u(x,t) = 0 u 0 (t) (Volume velocity input) Open end forces p(x,t) = 0 hence u+ = -u- • Open end is like fixed point for rope: reflects wave back inverted • Unlike fixed point, solid wall reflects traveling wave without inversion E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 14

  15. Standing waves • Consider (complex) sinusoidal input: U 0 e j ω t ( ) ⋅ u 0 t = Ke j ω t ( φ ) + • At any point, values will have form • Hence traveling waves: ( ω t φ A ) u + x j – kx + + ( ) – ct = A e ( ω t φ B ) j kx + + u - x ( ) + ct = B e ω c ⁄ k = where (spatial frequency, rad/m) λ ⁄ 2 π c ω ⁄ = c f = (wavelength ) • Pressure / vol. veloc. resultants show stationary pattern: standing waves - even when | A | ≠ | B | → simulation [sintwavemov.m] E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 15

  16. Standing waves (2) U 0 e j ω t pressure = 0 ( node ) kx = π vol.veloc. = max x = λ / 2 ( antinode ) For lossless termination (|u + | = |u - |), • have true nodes & antinodes • Pressure and vol. veloc. are phase shifted - in space and in time ∗ E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 16

  17. Transfer function U 0 e j ω t ( ) ⋅ u 0 t = • Consider tube excited by : - sinusoidal traveling waves must satisfy termination ‘boundary conditions’ - satisfied by complex constants A and B in u + x u - x ( , ) ( ) ( ) u x t = – ct + + ct ( ω t ) ( ω t ) Ae j – kx + Be j kx + = + e j ω t Ae jkx – Be jkx ⋅ ( ) = + - standing wave pattern will scale with input magnitude - point of excitation makes a big difference E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 17

  18. Transfer function (2) • For open-ended tube of length L excited at x = 0 U 0 e j ω t by : ( ) ω - U 0 e j ω t   cos k L – x ( , ) ⋅ - - - - - - - - - - - - - - - - - - - - - - - - - - - - u x t = k = - - - -   cos kL c (works at x = 0) • i.e. standing wave pattern e.g. varying L for a given ω (and hence k ): U 0 e j ω t U 0 U L U 0 e j ω t U 0 U L E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 18

  19. Transfer function (3) Varying ω for a given L : • ( , ) u L t 1 1 - - - - - - - - - - - - - - - - = - - - - - - - - - - - - - - - = - - - - - - - - - - - - - - - - - - - - - - - - - - - - - at x = L , ( , ) ( ω L c ⁄ ) u 0 t cos kL cos u ( L ) u (0) L ∞ u ( L ) at ω L / c = (2 r +1) π /2, r = 0,1,2... u (0) • Output vol. veloc. always larger than input ) π c )λ ( ( L = 2 r + 1 - - - - - - - = 2 r + 1 - - - • Unbounded for 2 ω 4 i.e. resonance E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 19

  20. Resonant modes • For lossless tube m λ ⋅ , m odd, λ wavelength, L = - - - with 4 ( ) u L is unbounded, meaning: - - - - - - - - - - - ( ) u 0 - transfer function has pole on frequency axis - energy at that frequency sustains indefinitely L = 3 · λ 1 /4 → ω 1 = 3 ω 0 L = λ 0 /4 • e.g 17.5 cm vocal tract, c = 350 m/s → ω 0 = 2 π · 500 Hz (then 1500, 2500 ...) E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 20

  21. Scattering junctions At abrupt change in area: • pressure must be continuous p k (x, t) = p k+1 (x, t) u+ k+1 u+ k • vol. veloc. must be continuous u- k u k (x, t) = u k+1 (x, t) u- k+1 • traveling waves u+ k , u- k , u+ k+1 , u- k+1 Area Ak Area Ak+1 will be different Solve e.g. for u - k and u + • k+1 : (generalized term.) 2r 1 + r u+ k+1 u+ k + A k+1 r = 1 - r r - 1 A k 1 + r r + 1 “Area ratio” u- k u- k+1 + 2 r + 1 E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 21

  22. Concatenated tube model • Vocal tract acts as a waveguide Lips x = L Lips u L ( t ) Glottis u 0 ( t ) x = 0 Glottis • Discrete approx. as varying-diameter tube: A k , L k A k+1 , L k+1 x E6820 SAPR - Dan Ellis L02 - Acoustics - 2002-02-04 - 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend