ecc is ready for rfid a proof in silicon
play

ECC is Ready for RFID A Proof in Silicon RFIDsec 08 Presentation - PowerPoint PPT Presentation

Institut f r Integrierte Systeme Integrated Systems Laboratory ECC is Ready for RFID A Proof in Silicon RFIDsec 08 Presentation Daniel Hein, daniel.hein@gmx.at Johannes Wolkerstorfer, Johannes.Wolkerstorfer@iaik.tugraz.at Norbert


  1. Institut f ü r Integrierte Systeme Integrated Systems Laboratory ECC is Ready for RFID – A Proof in Silicon RFIDsec 08 Presentation Daniel Hein, daniel.hein@gmx.at Johannes Wolkerstorfer, Johannes.Wolkerstorfer@iaik.tugraz.at Norbert Felber, felber@iis.ee.ethz.ch Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 1

  2. Institut f ü r Integrierte Systeme Integrated Systems Laboratory Outline I Radio Frequency Identification (RFID) – Product piracy – Authentication Elliptic Curve Cryptography (ECC) – Montgomery point multiplication – Binary extension field arithmetic ECCon processor architecture – RFID front-end – ECC processor • Small datapath Approach • Specialized ALU Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 2

  3. Institut f ü r Integrierte Systeme Integrated Systems Laboratory Outline II Digit level algorithms – Multiplication – Reduction – Multiplication with interleaved reduction Results – Timing, Area, Power – Comparison with related work Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 3

  4. Institut f ü r Integrierte Systeme Integrated Systems Laboratory Radio Frequency Identification Rapid automated item identification Barcode replacement Computer X-ray vision – No line of sight – No optical scanning RFID Tag – Antennae + IC – Powered by EM field Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 4

  5. Institut f ü r Integrierte Systeme Integrated Systems Laboratory Product Piracy Causes considerable economic damage Counterfeits inserted in legitimate supply chain RFID tags – Alleviate problem – Easy to clone Cryptography – Authentication Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 5

  6. Institut f ü r Integrierte Systeme Integrated Systems Laboratory Elliptic Curve Cryptography I Public-key cryptography – Short key => Small hardware footprint Authentication with digital signature – ECDSA Security depends on point multiplication Point multiplication – scalar • point on elliptic curve – Non-invertible Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 6

  7. Institut f ü r Integrierte Systeme Integrated Systems Laboratory Elliptic Curve Cryptography II Point multiplication – Point addition – Point doubling – Montgomery point ladder algorithm Side channel attack resistance – Timing based attacks: MPLA – Simple power analyses attacks: MPLA – Differential power analyses attacks: ECDSA Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 7

  8. Institut f ü r Integrierte Systeme Integrated Systems Laboratory Binary Extension Field Arithmetic Elliptic Curve defined on finite field Finite Fields – Fixed size elements Binary extension field – Elements = binary polynomials – Addition = XOR Required Operations – Addition – Multiplication – Reduction Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 8

  9. Institut f ü r Integrierte Systeme Integrated Systems Laboratory Prerequisites of an RFID application Small die area – 15000 gate equivalents Minuscule power consumption – 15μA available mean current Constant power consumption – “Accidental” load modulation Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 9

  10. Institut f ü r Integrierte Systeme Integrated Systems Laboratory ECCon Top Level Architecture RFID front end – ISO-18000-3-1 compliant – Air Interface • Power supply • Clock generation • Signal modulation – RART • Receive: bit stream to byte • Send: byte to bit stream – RFID Control Unit (RCU) • Communication protocol • Manages ECC processor Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 10

  11. Institut f ü r Integrierte Systeme Integrated Systems Laboratory ECC Processor Architecture I Implements point multiplication – Fixed 163 bit NIST curve Supports two modes – RFID – Stand alone Interface – two-phase full handshake – 8 bit wide Control unit – hardwired FSM hierarchy Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 11

  12. Institut f ü r Integrierte Systeme Integrated Systems Laboratory Low Power, Small Area ALU Architectures Bit-serial multiplier 163x6 RAM C – current state of the art o n I t – 2x163 = 326 bits ALU storage O r o • Lion's share of power used for l 163x1 Multiplier clocking the storage 16-bit datapath 64x16 – Used for ISE [GK03a] C RAM o – Conceptually 48-bit ALU storage n I t O • More power for computation r o 16x16 – Total power consumption smaller l Mult. – Requires digit based algorithms Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 12

  13. Institut f ü r Integrierte Systeme Integrated Systems Laboratory Arithmetic Logic Unit 16x16 GF(2) multiplier 2 Register input selection units 2 16-bit adders (XOR) Registers – 32-bit accumulator – interleaved reduction • 15-bit MC • 13-bit RC – clock gated Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 13

  14. Institut f ü r Integrierte Systeme Integrated Systems Laboratory Word Size Selection 12 A*C*P A*C*P 2 10 A*C 2 *P A*C 2 *P 2 8 6 4 2 0 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Bit-width Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 14

  15. Institut f ü r Integrierte Systeme Integrated Systems Laboratory Comba Multiplication Two possible digit ✳ B[2] B[1] B[0] A[2] A[1] A[0] multiplication algorithms – Operand scanning form B[0]A[0] – Product scanning form B[0]A[1] B[1]A[0] Product Scanning Form B[1]A[1] – A.k.a Comba Multiplication B[0]A[2] – Computes result one result B[2]A[0] digit at the time B[2]A[1] – Optimal operand order B[1]A[2] minimizes memory access B[2]A[2] P[5] P[4] P[3] P[2] P[1] P[0] Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 15

  16. Institut f ü r Integrierte Systeme Integrated Systems Laboratory Modular Reduction in GF(2 163 ) Multiplication of 2 163-bit elements produces a 325-bit result: a(z)*b(z)=c(z); deg(c(z))=325 Common residue: c(z) ≡ c(z) (mod f(z)) – f(z) = z 163 +z 7 +z 6 +z 3 +1... irreducible polynomial The common residue is limited in size to 163 bits The common residue is the remainder of a long division by f(z) Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 16

  17. Institut f ü r Integrierte Systeme Integrated Systems Laboratory An Alternate Reduction Method c H0 c L0 324 163 162 0 ⊕ c H1 c L1 c 1 =c H0 *r 168 163 162 0 ⊕ c L2 c 2 =c H1 *r 12 0 c =c L0 +c L1 +c L2 c 162 0 c(z)=c 2m-2 z 2m-2 +...+c m z m +c m-1 z m-1 +...+c 1 z+c 0 ≡ (c 2m-2 z m-2 +...+c m )r(z)+c m-1 z m-1 +...+c 1 z+c 0 (mod f(z)), where the reduction polynomial r(z)=f(z)-z 163 =z 7 +z 6 +z 3 +1 Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 17

  18. Institut f ü r Integrierte Systeme Integrated Systems Laboratory Interleaved Reduction Step I C[10] ACC H ACC L C L0 [10] C[10] Carry C H0 [0] L 175 163 162 160 MC RC empty empty Computation of the first 10 digits of the product 11 th digit (C[10]) exceeds 163 bit limit – Stored in ACC L – ACC H contains multiplication carry for 12 th digit C[11] C[10] contains the first 13 bits of C H0 – Saved to Reduction Carry register RC Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 18

  19. Institut f ü r Integrierte Systeme Integrated Systems Laboratory Interleaved Reduction Step II C[11] ACC H ACC L C[11] Carry C H0 [1] L C H0 [0] H 191 179 178 176 C H0 [0] L MC empty RC ACC H ACC L C[11] Carry C H0 [0] 178 163 C[11] Carry C H0 [1] L MC RC Upon computation of 12 th digit (C[11]) – Last 3 bits of C H0 [0] become available – C H0 [0] is restored in ACC L , lower 13 bit of C H0 [0] saved to RC – Multiplication carry is saved to Multiplication Carry register MC Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 19

  20. Institut f ü r Integrierte Systeme Integrated Systems Laboratory Interleaved Reduction Step III ACC H ACC L (C H0 [0] *r(z)) H (C H0 [0] *r(z)) L 15 0 C[11] Carry C H0 [1] L MC RC Multiplication of 1 st digit of C H0 (C H0 [0]) with r(z) produces 1 st digit of C 1 (C L1 [0]) Addition of C L1 [0] to C L0 [0], Sum stored to result memory Exchange of reduction multiplication carry and nominal multiplication carry Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 20

  21. Institut f ü r Integrierte Systeme Integrated Systems Laboratory Interleaved Reduction Step IV C[12] ACC H ACC L C[12] Carry C H0 [2] L C H0 [1] H 207 195 194 192 (C H0 [0] *r(z)) H C H0 [1] L MC RC The next digit of the product (C[12]) is computed – Requires several MAC operations Interleaved reduction steps I to IV repeat until all digits of C 1 are processed Process is repeated for C 2 – Single multiplication and addition Daniel Hein Budapest, 10.07.2008 ECC is Ready for RFID – A Proof in Silicon 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend