e h
play

E - PowerPoint PPT Presentation

E H Batrice de Tilire University Paris-Dauphine work in progress with Cdric Boutillier (Sorbonne) & David


  1. E      H  Béatrice de Tilière University Paris-Dauphine work in progress with Cédric Boutillier (Sorbonne) & David Cimasoni (Genève) Les Diablerets, February 11, 2020

  2. O • Dimer model • Dimer model and Harnack curves • Minimal isoradial immersions • Elliptic dimer model • Results

  3. D :  ◮ Planar, bipartite graph G = ( V = B ∪ W , E ) . ◮ Dimer configuration M : subset of edges s.t. each vertex is incident to exactly one edge of M � M ( G ) . ◮ Positive weight function on edges: ν = ( ν e ) e ∈ E . ◮ Dimer Boltzmann measure ( G finite): � ν e e ∈ M ∀ M ∈ M ( G ) , P dimer ( M ) = Z dimer ( G , ν ) . where Z dimer ( G , ν ) is the dimer partition function.

  4. D :  ◮ Planar, bipartite graph G = ( V = B ∪ W , E ) . ◮ Dimer configuration M : subset of edges s.t. each vertex is incident to exactly one edge of M � M ( G ) . ◮ Positive weight function on edges: ν = ( ν e ) e ∈ E . ◮ Dimer Boltzmann measure ( G finite): � ν e e ∈ M ∀ M ∈ M ( G ) , P dimer ( M ) = Z dimer ( G , ν ) . where Z dimer ( G , ν ) is the dimer partition function.

  5. D : K  ◮ Kasteleyn matrix (Percus-Kuperberg version) · Edge wb � angle φ wb s.t. for every face w 1 , b 1 , . . . , w k , b k : k � ( φ w j b j − φ w j + 1 b j ) ≡ ( k − 1 ) π mod 2 π. j = 1 · K is the corresponding twisted adjacency matrix.  ν wb e i φ wb if w ∼ b   K w , b =   0 otherwise .  

  6. D :   ◮ Assume G finite. T ( [K’] [K’]) Z dimer ( G , ν ) = | det( K ) | . T ( K’) Let E = { e 1 = w 1 b 1 , . . . , e n = w n b n } be a subset of edges of G , then: � n � � � � det( K − 1 ) E P dimer ( e 1 , . . . , e n ) = � K w j , b j � � , � � � j = 1 where ( K − 1 ) E is the sub-matrix of K − 1 whose rows/columns are indexed by black/white vertices of E . ◮ G infinite: Boltzmann measure � Gibbs measure · Periodic case [Cohn-Kenyon-Propp’01], [Ke.-Ok.-Sh.’06] · Non-periodic [dT’07], [Boutillier-dT’10], [B-dT-Raschel’19]

  7. D :   ◮ Assume G is bipartite, infinite, Z 2 -periodic. ◮ Exhaustion of G by toroidal graphs: ( G n ) = ( G / n Z 2 ) .

  8. D :   ◮ Fundamental domain: G 1 ◮ Let K 1 be the Kasteleyn matrix of fundamental domain G 1 . ◮ Multiply edge-weights by z , z − 1 , w , w − 1 → K 1 ( z , w ) . ◮ The characteristic polynomial is: P ( z , w ) = det K 1 ( z , w ) . Example: weight function ν ≡ 1, P ( z , w ) = 5 − z − 1 z − w − 1 w .

  9. D :   ◮ Fundamental domain: G 1 z − 1 z w − 1 w ◮ Let K 1 be the Kasteleyn matrix of fundamental domain G 1 . ◮ Multiply edge-weights by z , z − 1 , w , w − 1 → K 1 ( z , w ) . ◮ The characteristic polynomial is: P ( z , w ) = det K 1 ( z , w ) . Example: weight function ν ≡ 1, P ( z , w ) = 5 − z − 1 z − w − 1 w .

  10. D :   ◮ The spectral curve: C = { ( z , w ) ∈ ( C ∗ ) 2 : P ( z , w ) = 0 } . ◮ Amoeba: image of C through the map ( z , w ) �→ (log | z | , log | w | ) . Amoeba of the square-octagon graph

  11. D   H  T ◮ Spectral curves of bipartite dimers [Ke.-Ok.-Sh.’06] [Ke.-Ok.’06] ←→ Harnack curves with points on ovals. ◮ Spectral curves of isoradial, bipartite dimer models with critical [Kenyon-Okounkov’06] weights [Kenyon ’02] ←→ Harnack curves of genus 0. [Goncharov-Kenyon ’13] ◮ Spectral curves of minimal, bipartite dimers ←→ Harnack curves with points on ovals. Explicit ( −→ ) map ◮ [Fock’15] Explicit ( ←− ) map for all algebraic curves. (no check on positivity).

  12. D   H     T ( [B-T-C’+]) Spectral curves of minimal, bipartite dimer models with Fock’s weights ←→ Harnack curves of genus 1 with a point on the oval.

  13. Q-, - ◮ Infinite, planar, embedded graph G ; embedded dual graph G ∗ . ◮ Corresponding quad-graph G ⋄ , train-tracks.

  14. Q-, - ◮ Infinite, planar, embedded graph G ; embedded dual graph G ∗ . ◮ Corresponding quad-graph G ⋄ , train-tracks.

  15. Q-, - ◮ Infinite, planar, embedded graph G ; embedded dual graph G ∗ . ◮ Corresponding quad-graph G ⋄ , train-tracks.

  16. Q-, - ◮ Infinite, planar, embedded graph G ; embedded dual graph G ∗ . ◮ Corresponding quad-graph G ⋄ , train-tracks.

  17. Q-, - ◮ Infinite, planar, embedded graph G ; embedded dual graph G ∗ . ◮ Corresponding quad-graph G ⋄ , train-tracks.

  18. Q-, - ◮ Infinite, planar, embedded graph G ; embedded dual graph G ∗ . ◮ Corresponding quad-graph G ⋄ , train-tracks.

  19. I  ◮ An isoradial embedding of an infinite, planar graph G is an embedding such that all of its faces are inscribed in a circle of radius 1, and such that the center of the circles are in the interior of the faces [Duffin] [Mercat] [Kenyon] . ◮ Equivalent to: the quad-graph G ⋄ is embedded so that of all its faces are rhombi. T ( K-S’) An infinite planar graph G has an isoradial embedding iff

  20. I 

  21. I 

  22. I 

  23. M  ◮ If the graph G is bipartite, train-tracks are naturally oriented (white vertex of the left, black on the right).

  24. M  ◮ If the graph G is bipartite, train-tracks are naturally oriented (white vertex of the left, black on the right). ◮ A bipartite, planar graph G is minimal if [Thurston’04] [Gulotta’08] [Ishii-Ueda’11] [Goncharov-Kenyon’13]

  25. I    ◮ A minimal isoradial immersion of an infinite planar graph G is an immersion of the quadgraph G ⋄ such that: · all of the faces are rhombi (flat or reversed) · the immersion is flat: the sum of the rhombus angles around every vertex and every face is equal to 2 π . P ( B-T-C ’) The flatness condition is equivalent to : · around every vertex there is at most one reversed rhombus · around every face, the cyclic order of the vertices differ by at most disjoint transpositions in the embedding and in the immersion. T ( B-T-C ’) An infinite, planar, bipartite graph G has a minimal isoradial immersion iff it is minimal.

  26. D   F’  ◮ Tool 1. Jacobi’s (first) theta function. · Parameter q = e i πτ , ℑ ( τ ) > 0, Λ ( q ) = π Z + πτ Z , T ( q ) = C / Λ . ∞ � ( − 1 ) n q n ( n + 1 ) sin( 2 n + 1 ) z . 1 θ ( z ) = 2 q 4 n = 0 · Allows to represent Λ ( q ) -periodic meromorphic functions. 1 4 sin( z ) as q → 0. · θ ( z ) ∼ 2 q ◮ Tool 2. Isoradially immersed, bipartite, minimal graph G . · each train-track T is assigned direction e i 2 α T . · each edge e = wb is assigned train-track directions e 2 i α , e 2 i β , and a half-angle β − α ∈ [ 0 , π ) .

  27. D   F’   ◮ Tool 3. Discrete Abel map [Fock] D ∈ ( R /π Z ) V ( G ⋄ ) · Fix face f 0 and set D ( f 0 ) = 0, · ◦ : degree -1, • : degree 1, faces: degree 0, · when crossing T : increase/decrease D by α T accordingly. f ′ D ( f ) + β − α e 2 i α β − α w b D ( f ) + β D ( f ) − α e 2 i β D ( f ) f ◮ Point t ∈ π 2 τ + R . ◮ Fock’s adjacency matrix θ ( β − α )  if w ∼ b   K ( t )  θ ( t + D ( b ) − β ) θ ( t + D ( w ) − α ) w , b =    0 otherwise .  

  28. D   F’   L ( [B-T-C’+]) Under the above assumptions, the matrix K ( t ) is a Kasteleyn matrix for a dimer model (positive weights) on G .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend