tropical bases by regular projections
play

Tropical bases by regular projections Kerstin Hept Eindhoven, - PowerPoint PPT Presentation

Tropical bases by regular projections Kerstin Hept Eindhoven, 10/31/07 joint work with Thorsten Theobald www.arXiv.org/abs/0708.1727


  1. ✁ ✄ Tropical bases by regular projections Kerstin Hept Eindhoven, 10/31/07 joint work with Thorsten Theobald www.arXiv.org/abs/0708.1727 •••••••••••••••••••••••••••••••••••

  2. Topics ✁ ✄ First session: Second session: • Tropical hypersurface • The main theorem • Newton polytope and its subdi- • Construction of appropriate vision projections • Properties of the tropical hyper- • Preimage of a projection surface • Example • Real valuations, Puiseux series • Tropicalization of a polynomial • Tropical variety and prevariety and their properties • Tropical bases • Linear spaces •••••••••••••••••••••••••••••••••••

  3. Tropical Semiring ✁ ✄ The main algebraic structure in tropical geometry is the tropical semiring: Definition. The tropical semiring is the triple ( R ∪{∞} , ⊕ , ⊙ ) with the following tropical addition and multiplication a ⊕ b := min( a, b ) a ⊙ b := a + b We observe: • The compositions are commutative, associative und distributive. • ∞ is the additive and 0 is the multiplicative neutral element • There is NO TROPICAL SUBTRACTION. •••••••••••••••••••••••••••••••••••

  4. Tropical polynomial ring ✁ ✄ Tropical polynomial ring in the unknowns x 1 , . . . , x n : Monomials: x ⊙ i 1 ⊙ x ⊙ i 2 ⊙ . . . ⊙ x ⊙ i n n 1 2 i 1 , . . . , i n ∈ Z Polynomials: Finite linear combinations of monomials a ⊙ x i 1 1 ⊙ x i 2 2 ⊙ . . . ⊙ x i n p ( x 1 , . . . , x n ) = n ⊕ b ⊙ x j 1 1 ⊙ x j 2 2 ⊙ . . . ⊙ x j n n ⊕ . . . = min { a + i 1 x 1 + . . . + i n x n , b + j 1 x 1 + . . . + j n x n , . . . } •••••••••••••••••••••••••••••••••••

  5. Tropical hypersurface ✁ ✄ Definition. Let p ( x 1 , . . . , x n ) be a tropical polynomial. Then { x ∈ R n | T ( p ) := the minimum is attained at least twice in x } is the tropical hypersurface defined by p . Example. Tropical curves in the plane q := 1 ⊕ 0 ⊙ x 1 ⊕ 0 ⊙ x 2 ⊕ 1 ⊙ x 2 1 ⊕ 0 ⊙ x 1 ⊙ x 2 ⊕ 1 ⊙ y 2 p := 0 ⊙ x 1 ⊕ 1 ⊙ x 2 ⊕ 2 � � � � � � � � � � � � � Figure: a tropical line Figure: a tropical quadratic curve •••••••••••••••••••••••••••••••••••

  6. Newton polytope ✁ ✄ Definition. Let f be a tropical polynomial in the unknowns x 1 , . . . , x n with terms x i 1 1 ⊙ . . . ⊙ x i n n . Then the Newton polytope of f is the convex hull New( f ) := conv { ( i 1 , . . . , i n ) ∈ R n : x i 1 1 · · · x i n n a term in p } Example. f = 2 ⊙ x 2 ⊕ x 2 ⊙ y 3 ⊕ 3 ⊙ x ⊙ y 2 ⊕ 1 ✻ 3 � � � 2 ✁ ✁ ✁ 1 ✁ ✁ ✁ ✲ 1 2 Figure: the Newton polytope of f •••••••••••••••••••••••••••••••••••

  7. Subdivision ✁ ✄ Definition. For a tropical polyno- mial p the extended Newton polytope is: conv { ( i 1 , . . . , i n , c i ) : c i ⊙ x i 1 1 ⊙ . . . ⊙ x i n n a monomial in p } The projection of the lower bound onto the first n coordinates gives a subdivision of the Newton polytope. The tropical hypersurface is dual to that subdivision. •••••••••••••••••••••••••••••••••••

  8. Examples ✁ ✄ Example. A subdivided Newton polytope and its dual. p := 3 ⊙ x 2 1 ⊕ 2 ⊙ x 1 ⊙ x 2 ⊕ 3 ⊙ x 2 2 ⊕ 0 2 3 ❅ ❅ � ❅ ❅ 2 ❅ � � � ❅ � ❅ 2 � � ❅ 3 0 � � Example. One can recognize the type of the tropical hypersurface only by analysing the subdivided Newton polytope. ❅ � ❅ � ❅ ❅ � ❅ ❅ � � ❅ � ❅ � � � •••••••••••••••••••••••••••••••••••

  9. Balancing condition ✁ ✄ Let e be an edge of a tropical curve T ( f ) in R 2 . Then one can define its multiplicity by the lattice length of the corresponding edge in the subdivided Newton polytope. Let p be any vertex of T ( f ), v 1 , . . . , v r the primitive lattice vectors in the direction of the edges emanating from p and m 1 , . . . , m r the corresponding multiplicities. Then the following balancing condition holds: m 1 · v 1 + m 2 · v 2 + . . . + m r · v r = 0 (This holds because of the duality) 2 � ❅ ■ � ✒ � ❅ � 2 · (0 , − 1) + (1 , 1) + ( − 1 , 1) = 0 2 2 ❄ � � 2 •••••••••••••••••••••••••••••••••••

  10. Real valuations ✁ ✄ For a field K , a real valuation is a map ord : K → ¯ R = R ∪ {∞} with • K \ { 0 } → R and • 0 �→ ∞ • ord( ab ) = ord( a ) + ord( b ) and • ord( a + b ) ≥ min { ord( a ) , ord( b ) } . Example. K = Q with the p -adic valuation: Every q ∈ Q with q = p s m n , p � | m, p � | n, s ∈ Z has the valuation ord( q ) = v p ( q ) := s. K n via We can extend the valuation map to an algebraic closure ¯ K and then to ¯ K n → ¯ ord : ¯ R n , ( a 1 , . . . , a n ) �→ (ord( a 1 ) , . . . , ord( a n )) . •••••••••••••••••••••••••••••••••••

  11. Puiseux series ✁ ✄ Another interesting field is C {{ t }} , the field of puiseux series: The elements are formal power series • with coefficients in C . • with rational exponents, bounded below with a common denominator C {{ t }} is an algebraic closed field. A valuation is given by the order map ord : ord : C {{ t }} → R c α x α �→ min { α | c α � = 0 } � α ∈A •••••••••••••••••••••••••••••••••••

  12. Tropicalization ✁ ✄ α c α x α be a polynomial in K [ x 1 , . . . , x n ] where K is a field with a Let f = � valuation ord. Definition. The tropicalization of f is defined as � ord( c α ) ⊙ x α trop( f ) := α � ord( c α ) ⊙ x α 1 1 ⊙ . . . ⊙ x α n = n α = min α { ord( c α ) + α 1 x 1 + · · · + α n x n } and the tropical hypersurface of f is T ( f ) := T ( trop ( f )) { w ∈ R n : the minimum in trop( f ) = is attained at least twice in w } •••••••••••••••••••••••••••••••••••

  13. ✁ ✄ Example. Let f = 2 x + 4 y − x 2 + 3 y 2 a polynomial in Q [ x, y ] with the 2 -adic valuation. Then 1 ⊙ x ⊕ 2 ⊙ y ⊕ 0 ⊙ x 2 ⊕ 0 ⊙ y 2 trop ( f ) = = min { 1 + x, 2 + y, 2 x, 2 y } ✻ 3 � � ✟� 2 ✟✟✟✟✟ 1 � � ✲ � � 1 2 3 � � Figure: The tropical hypersurface T ( f ) •••••••••••••••••••••••••••••••••••

  14. Tropical variety ✁ ✄ We generalize that to ideals: Definition. For an ideal I ✁ K [ x 1 , . . . , x n ] , the tropical variety of I is defined by � T ( I ) = T ( f ) f ∈ I There is another description of the tropical variety of an ideal: Proposition (Kapranov). If the valuation is nontrivial, then the tropical variety is the topological closure T ( I ) = ord V ( I ) K ∗ ) n is the variety of I . where V ( I ) ⊂ ( ¯ •••••••••••••••••••••••••••••••••••

  15. Example ✁ ✄ Let I be generated by f 1 := 2 + y − 4 x 2 y + x 2 y 2 + 2 xy 2 f 2 := xyz − 2 z + 4 xyz 2 − 2 + z 2 Then we get the tropical variety in R 3 : Figure: Tropical variety T ( I ) •••••••••••••••••••••••••••••••••••

  16. Properties ✁ ✄ A tropical variety has several properties: Proposition (Bieri-Groves 1984). Let I be a prime ideal. Then T ( I ) is a pure m -dimensional complex where m = dim( I ) is the Krull dimension of the ideal.. Proposition (Bieri-Groves 1984). T ( I ) is totally concave, which means that each convex hull of a local cone of a point x is an affine subspace. ❅ � ❅ � ❅ � � ❅ ■ � ✒ ❅ � ❅ � � � ❅ � ❅ � LC x ( T ( I )) x ❄ � � � Speyer showed in 2005 that the balancing condition, which is stronger than the concavity condition, holds for tropical varieties in general. •••••••••••••••••••••••••••••••••••

  17. Tropical prevariety ✁ ✄ Definition. Let f 1 , . . . , f s ∈ K [ x 1 , . . . , x n ] be polynomials. Then the tropical pre- variety defined by f 1 , . . . , f s is the intersection of the tropical hypersurfaces s � T ( f 1 , . . . , f s ) := T ( f i ) i =1 This is in general not a tropical variety: Example. f 1 := t + ( t + 1) x 2 + (2 t 3 − t 4 ) y 2 + txy 1 3 3 2 + t 2 ) x + t 2 y f 2 := t + ( t ( 1 2 , − 1 2 ) � � ❅ � � ❅ ❅ � � � (1 , − 1) � � � � � � � � •••••••••••••••••••••••••••••••••••

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend