drinfeld modules hasse invariants and factoring
play

Drinfeld Modules, Hasse Invariants and Factoring Polynomials over - PowerPoint PPT Presentation

Drinfeld Modules, Hasse Invariants and Factoring Polynomials over Finite Fields Anand Kumar Narayanan Laboratoire dinformatique de Paris 6 GTBAC Telecom Paristech 8 March 2018 Polynomial Factorization over Finite Fields Decompose a given


  1. Drinfeld Modules, Hasse Invariants and Factoring Polynomials over Finite Fields Anand Kumar Narayanan Laboratoire d’informatique de Paris 6 GTBAC Telecom Paristech 8 March 2018

  2. Polynomial Factorization over Finite Fields Decompose a given monic sqaure-free f ( x ) ∈ F q [ x ] of degree n into its monic irreducible factors. � f ( x ) = p i ( x ) i Gauss->Legendre->Berlekamp->Cantor/Zassenhaus->Camion->von zur Gather/Shoup->Kaltofen/Shoup->Kedlaya-Umans Kaltofen-Shoup algorithm with Kedlaya-Umans fast modular composition takes expected time n 3 / 2 + o ( 1 ) ( log q ) 1 + o ( 1 ) + n 1 + o ( 1 ) ( log q ) 2 + o ( 1 ) . Drinfeld modules and Polynomial Factorization ◮ Panchishkin and Potemine (1989), van der Heiden (2005). This Talk: ◮ Factor Degree Estimation using Euler-Poincare Characteristic of Drinfeld modules. ◮ Rank-2 Drinfeld module analogue of Kaltofen-Lobo’s blackbox Berlekamp algorithm. ◮ Drinfeld modules with complex multiplication, Hasse invariants/Deligne’s congruence.

  3. Polynomial Factorization over Finite Fields Decompose a given monic sqaure-free f ( x ) ∈ F q [ x ] of degree n into its monic irreducible factors. � f ( x ) = p i ( x ) i Gauss->Legendre->Berlekamp->Cantor/Zassenhaus->Camion->von zur Gather/Shoup->Kaltofen/Shoup->Kedlaya-Umans Kaltofen-Shoup algorithm with Kedlaya-Umans fast modular composition takes expected time n 3 / 2 + o ( 1 ) ( log q ) 1 + o ( 1 ) + n 1 + o ( 1 ) ( log q ) 2 + o ( 1 ) . Drinfeld modules and Polynomial Factorization ◮ Panchishkin and Potemine (1989), van der Heiden (2005). This Talk: ◮ Factor Degree Estimation using Euler-Poincare Characteristic of Drinfeld modules. ◮ Rank-2 Drinfeld module analogue of Kaltofen-Lobo’s blackbox Berlekamp algorithm. ◮ Drinfeld modules with complex multiplication, Hasse invariants/Deligne’s congruence.

  4. Degree Estimation using Euler Characteristic of Drinfeld Modules Decompose a given monic f ( x ) ∈ F q [ x ] of degree n into its monic irreducible factors. � f ( x ) = p i ( x ) i Finding an irreducible factor degree with runtime exponent < 3 / 2 ⇓ factorization with exponent < 3 / 2 . An algorithm to find the smallest irreducible factor degree using Euler-Poincare characteristics of random Drinfeld modules.

  5. Rank-2 Drinfeld Modules Let F q [ x ] � σ � denote the skew polynomial ring with the commutation rule σ u ( x ) = u ( x ) q σ, ∀ u ( x ) ∈ F q [ x ] . A rank-2 Drinfeld module over F q ( x ) is (the F q [ x ] module structure on the additive group scheme over F q ( x ) given by) a ring homomorphism φ : F q [ x ] − → F q ( x ) � σ � → x + g φ ( x ) σ + � φ ( x ) σ 2 x �− for some g φ ( x ) ∈ F q ( x ) and non zero � φ ( x ) ∈ F q [ x ] .

  6. Rank-2 Drinfeld Modules Let F q [ x ] � σ � denote the skew polynomial ring with the commutation rule σ u ( x ) = u ( x ) q σ, ∀ u ( x ) ∈ F q [ x ] . A rank-2 Drinfeld module over F q ( x ) is (the F q [ x ] module structure on the additive group scheme over F q ( x ) given by) a ring homomorphism φ : F q [ x ] − → F q ( x ) � σ � → x + g φ ( x ) σ + � φ ( x ) σ 2 x �− for some g φ ( x ) ∈ F q ( x ) and non zero � φ ( x ) ∈ F q [ x ] . 2 deg ( b ) � φ b , i ( x ) σ i For b ( x ) ∈ F q [ x ] , b ( x ) �− → b ( x ) + . i = 1 � �� � Call φ b

  7. Rank-2 Drinfeld Modules Let F q [ x ] � σ � denote the skew polynomial ring with the commutation rule σ u ( x ) = u ( x ) q σ, ∀ u ( x ) ∈ F q [ x ] . A rank-2 Drinfeld module over F q ( x ) is (the F q [ x ] module structure on the additive group scheme over F q ( x ) given by) a ring homomorphism φ : F q [ x ] − → F q ( x ) � σ � → x + g φ ( x ) σ + � φ ( x ) σ 2 x �− for some g φ ( x ) ∈ F q ( x ) and non zero � φ ( x ) ∈ F q [ x ] . 2 deg ( b ) � φ b , i ( x ) σ i For b ( x ) ∈ F q [ x ] , b ( x ) �− → b ( x ) + . i = 1 � �� � Call φ b Let M be an F q [ x ] algebra, say M = F q [ x ] / ( f ( x )) . Retain the addition in M but define a new F q [ x ] action: 2 deg ( b ) � φ b , i ( x ) a ( x ) q i b ( x ) ⋆ a ( x ) := φ b ( a ) = b ( x ) a ( x ) + i = 1 Let φ ( M ) denote the new F q [ x ] module structure thus endowed to M .

  8. Rank-2 Drinfeld Modules Let F q [ x ] � σ � denote the skew polynomial ring with the commutation rule σ u ( x ) = u ( x ) q σ, ∀ u ( x ) ∈ F q [ x ] . A rank-2 Drinfeld module over F q ( x ) is (the F q [ x ] module structure on the additive group scheme over F q ( x ) given by) a ring homomorphism φ : F q [ x ] − → F q ( x ) � σ � → x + g φ ( x ) σ + � φ ( x ) σ 2 x �− for some g φ ( x ) ∈ F q ( x ) and non zero � φ ( x ) ∈ F q [ x ] . 2 deg ( b ) � φ b , i ( x ) σ i For b ( x ) ∈ F q [ x ] , b ( x ) �− → b ( x ) + . i = 1 � �� � Call φ b Let M be an F q [ x ] algebra, say M = F q [ x ] / ( f ( x )) . Retain the addition in M but define a new F q [ x ] action: 2 deg ( b ) � φ b , i ( x ) a ( x ) q i b ( x ) ⋆ a ( x ) := φ b ( a ) = b ( x ) a ( x ) + i = 1 Let φ ( M ) denote the new F q [ x ] module structure thus endowed to M .

  9. Euler-Poincare Characteristic of Finite F q [ x ] Modules An F q [ x ] measure of cardinality: For a finite F q [ x ] module A , χ ( A ) ∈ F q [ x ] is the monic polynomial s.t. ◮ If A ∼ = F q [ x ] / ( p ( x )) for a monic irreducible p ( x ) , then χ ( A ) = p ( x ) . ◮ If 0 → A 1 → A → A 2 → 0 is exact, then χ ( A ) = χ ( A 1 ) χ ( A 2 ) . For a finite Z module G , # G ∈ Z is the positive integer s.t. ◮ If G ∼ = Z / ( p ) for a positive prime p , then # G = p . ◮ If 0 → G 1 → G → G 2 → 0 is exact, then # G = # G 1 # G 2 . Drinfeld module analogue of Hasse bound (Gekeler) For a monic irreducible p ( x ) ∈ F q [ x ] χ φ, p ( x ) := χ ( φ ( F q [ x ] / ( p ( x )))) = p ( x ) + t φ, p ( x ) � �� � ≤ deg ( p ) / 2 #( E ( Z / p Z )) = p + 1 − t E , p ���� − 2 √ p ≤ ≤ 2 √ p χ φ, p ( x ) = p ( x ) + terms of degree at most deg ( p ) / 2 .

  10. Euler-Poincare Characteristic of Finite F q [ x ] Modules An F q [ x ] measure of cardinality: For a finite F q [ x ] module A , χ ( A ) ∈ F q [ x ] is the monic polynomial s.t. ◮ If A ∼ = F q [ x ] / ( p ( x )) for a monic irreducible p ( x ) , then χ ( A ) = p ( x ) . ◮ If 0 → A 1 → A → A 2 → 0 is exact, then χ ( A ) = χ ( A 1 ) χ ( A 2 ) . For a finite Z module G , # G ∈ Z is the positive integer s.t. ◮ If G ∼ = Z / ( p ) for a positive prime p , then # G = p . ◮ If 0 → G 1 → G → G 2 → 0 is exact, then # G = # G 1 # G 2 . Drinfeld module analogue of Hasse bound (Gekeler) For a monic irreducible p ( x ) ∈ F q [ x ] χ φ, p ( x ) := χ ( φ ( F q [ x ] / ( p ( x )))) = p ( x ) + t φ, p ( x ) � �� � ≤ deg ( p ) / 2 #( E ( Z / p Z )) = p + 1 − t E , p ���� − 2 √ p ≤ ≤ 2 √ p χ φ, p ( x ) = p ( x ) + terms of degree at most deg ( p ) / 2 .

  11. Factor Degree Estimation � � f ( x ) = p i ( x ) ⇒ φ ( F q [ x ] / ( f ( x ))) = φ ( F q [ x ] / ( p i ( x ))) i i � � ⇒ χ φ, f ( x ) = χ φ, p i = ( p i ( x ) + t φ, p i ( x )) i i Since ∀ i , deg ( t φ, p i ( x )) ≤ deg ( p i ) / 2 , χ φ, f ( x ) = f ( x ) + terms of smaller degree . If s f denotes the degree of the smallest degree factor of f ( x ) , � � χ φ, f ( x ) − f ( x ) = ( t φ, p j ( x ) p i ( x )) + terms of degree < ( deg ( f ) − ⌈ s f / 2 ⌉ ) j : deg ( p j )= s f i � = j ⇒ ⌈ s f / 2 ⌉ ≤ deg ( f ) − deg ( χ φ, f − f )

  12. Factor Degree Estimation � � f ( x ) = p i ( x ) ⇒ φ ( F q [ x ] / ( f ( x ))) = φ ( F q [ x ] / ( p i ( x ))) i i � � ⇒ χ φ, f ( x ) = χ φ, p i = ( p i ( x ) + t φ, p i ( x )) i i Since ∀ i , deg ( t φ, p i ( x )) ≤ deg ( p i ) / 2 , χ φ, f ( x ) = f ( x ) + terms of smaller degree . If s f denotes the degree of the smallest degree factor of f ( x ) , � � χ φ, f ( x ) − f ( x ) = ( t φ, p j ( x ) p i ( x )) + terms of degree < ( deg ( f ) − ⌈ s f / 2 ⌉ ) j : deg ( p j )= s f i � = j ⇒ ⌈ s f / 2 ⌉ ≤ deg ( f ) − deg ( χ φ, f − f ) � � Theorem : Prob φ ⌈ s f / 2 ⌉ = deg ( f ) − deg ( χ φ, f − f ) ≥ 1 / 4 .

  13. Factor Degree Estimation � � f ( x ) = p i ( x ) ⇒ φ ( F q [ x ] / ( f ( x ))) = φ ( F q [ x ] / ( p i ( x ))) i i � � ⇒ χ φ, f ( x ) = χ φ, p i = ( p i ( x ) + t φ, p i ( x )) i i Since ∀ i , deg ( t φ, p i ( x )) ≤ deg ( p i ) / 2 , χ φ, f ( x ) = f ( x ) + terms of smaller degree . If s f denotes the degree of the smallest degree factor of f ( x ) , � � χ φ, f ( x ) − f ( x ) = ( t φ, p j ( x ) p i ( x )) + terms of degree < ( deg ( f ) − ⌈ s f / 2 ⌉ ) j : deg ( p j )= s f i � = j ⇒ ⌈ s f / 2 ⌉ ≤ deg ( f ) − deg ( χ φ, f − f ) � � Theorem : Prob φ ⌈ s f / 2 ⌉ = deg ( f ) − deg ( χ φ, f − f ) ≥ 1 / 4 .

  14. Computing Euler-Poincare Characteristics ◮ Compute χ φ, f as the characteristic polynomial of the ( F q -linear) φ x action on F q [ x ] / ( f ( x )) . ◮ Only need a Montecarlo algorithm for χ φ, f ( x ) that succeeds with constant probability ! For a ∈ φ ( F q ( x ) / f ( x )) , Ord ( a ) is the smallest degree monic g ( x ) such that φ g ( a ) = 0 . Theorem: It is likely that χ φ, f equals the order Ord ( a ) of a random a ∈ φ ( F q [ x ] / ( f ( x ))) . Ord ( a ) can be computed with run time exponent 3 / 2 by (a Drinfeld version of) automorphism-projection followed by Berlekamp-Massey assuming the matrix multiplication exponent is 2 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend