im u q gl m end v n end h n 1 v n s n 1
play

Im ( U q ( gl m ) End( V n ) ) End H n , 1 ( V n ) S n , 1 . - PowerPoint PPT Presentation

. Drinfeld type realization of cyclotomic q -Schur algebras . Kentaro Wada Shinshu Univ. 12th March, 2012 . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 1 / 25


  1. Introduction r = 1 ( S n , 1 � End H n , 1 ( V ⊗ n ) ) V ⊗ n = ⊕ µ V ⊗ n : weight space decom. as U q ( gl m ) -module. µ µ � Ind H n , 1 � V ⊗ n as H n , 1 -module (permutation module). H ( S µ ) 1 r > 1 M µ : = m µ · H n , r ( m µ ∈ H n , r ) “ permutation module” ( ⊕ µ M µ ) S n , r : = End H n , r ; cyclotomic q -Schur alg. Today Introduce an algebra U ass. to Cartan data of gl m s.t. U ↠ S n , r (Drinfeld type presentation). Representation theory of U and S n , r . highest weight modules. Harish-Chandra Ind and Res ( U L ֒ → U P ֒ → U ) evaluation functor O g → U L -mod ( O g ⊂ U q ( g ) -mod ). . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 3 / 25

  2. Introduction r = 1 ( S n , 1 � End H n , 1 ( V ⊗ n ) ) V ⊗ n = ⊕ µ V ⊗ n : weight space decom. as U q ( gl m ) -module. µ µ � Ind H n , 1 � V ⊗ n as H n , 1 -module (permutation module). H ( S µ ) 1 r > 1 M µ : = m µ · H n , r ( m µ ∈ H n , r ) “ permutation module” ( ⊕ µ M µ ) S n , r : = End H n , r ; cyclotomic q -Schur alg. Today Introduce an algebra U ass. to Cartan data of gl m s.t. U ↠ S n , r (Drinfeld type presentation). Representation theory of U and S n , r . highest weight modules. Harish-Chandra Ind and Res ( U L ֒ → U P ֒ → U ) evaluation functor O g → U L -mod ( O g ⊂ U q ( g ) -mod ). . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 3 / 25

  3. Introduction r = 1 ( S n , 1 � End H n , 1 ( V ⊗ n ) ) V ⊗ n = ⊕ µ V ⊗ n : weight space decom. as U q ( gl m ) -module. µ µ � Ind H n , 1 � V ⊗ n as H n , 1 -module (permutation module). H ( S µ ) 1 r > 1 M µ : = m µ · H n , r ( m µ ∈ H n , r ) “ permutation module” ( ⊕ µ M µ ) S n , r : = End H n , r ; cyclotomic q -Schur alg. Today Introduce an algebra U ass. to Cartan data of gl m s.t. U ↠ S n , r (Drinfeld type presentation). Representation theory of U and S n , r . highest weight modules. Harish-Chandra Ind and Res ( U L ֒ → U P ֒ → U ) evaluation functor O g → U L -mod ( O g ⊂ U q ( g ) -mod ). . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 3 / 25

  4. Cyclotomic q -Schur algebras H n , r : Ariki-Koike alg. over Q ( q ) ass. to S n ⋉ ( Z / r Z ) n . generators: T 0 , T 1 , . . . , T n − 1 . defining relations: ( T 0 − q c 1 )( T 0 − q c 2 ) . . . ( T 0 − q c r ) = 0 ( c 1 , . . . , c r ∈ Z ) , ( T i − q )( T i + q − 1 ) = 0 (1 ≤ i ≤ n − 1) , + braid relations L i : = T i − 1 . . . T 1 T 0 T 1 . . . T i − 1 ( 1 ≤ i ≤ n ) : Jucys-Murphy elements. S n , r : cyclotomic q -Schur algebra ass. to H n , r : ( ⊕ M µ ) S n , r : = End H n , r , µ ∈ Λ n , r ( m ) where M µ = m µ · H n , r ( m µ ∈ H n , r ). . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 4 / 25

  5. Cyclotomic q -Schur algebras H n , r : Ariki-Koike alg. over Q ( q ) ass. to S n ⋉ ( Z / r Z ) n . generators: T 0 , T 1 , . . . , T n − 1 . defining relations: ( T 0 − q c 1 )( T 0 − q c 2 ) . . . ( T 0 − q c r ) = 0 ( c 1 , . . . , c r ∈ Z ) , ( T i − q )( T i + q − 1 ) = 0 (1 ≤ i ≤ n − 1) , + braid relations L i : = T i − 1 . . . T 1 T 0 T 1 . . . T i − 1 ( 1 ≤ i ≤ n ) : Jucys-Murphy elements. S n , r : cyclotomic q -Schur algebra ass. to H n , r : ( ⊕ M µ ) S n , r : = End H n , r , µ ∈ Λ n , r ( m ) where M µ = m µ · H n , r ( m µ ∈ H n , r ). . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 4 / 25

  6. Cyclotomic q -Schur algebras H n , r : Ariki-Koike alg. over Q ( q ) ass. to S n ⋉ ( Z / r Z ) n . generators: T 0 , T 1 , . . . , T n − 1 . defining relations: ( T 0 − q c 1 )( T 0 − q c 2 ) . . . ( T 0 − q c r ) = 0 ( c 1 , . . . , c r ∈ Z ) , ( T i − q )( T i + q − 1 ) = 0 (1 ≤ i ≤ n − 1) , + braid relations L i : = T i − 1 . . . T 1 T 0 T 1 . . . T i − 1 ( 1 ≤ i ≤ n ) : Jucys-Murphy elements. S n , r : cyclotomic q -Schur algebra ass. to H n , r : ( ⊕ M µ ) S n , r : = End H n , r , µ ∈ Λ n , r ( m ) where M µ = m µ · H n , r ( m µ ∈ H n , r ). . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 4 / 25

  7. Borel subalgebras r = 1 e i , f i ( 1 ≤ i ≤ m − 1 ), K ± j ,( 1 ≤ j ≤ m ) : Chevalley gen. of U q ( gl m ) . Recall ρ : U q ( gl m ) ↠ S n , 1 . � U ≥ 0 q : = ⟨ e i , K ± � 1 ≤ i ≤ m − 1 , 1 ≤ j ≤ m ⟩ alg. ⊂ U q ( gl m ) � j q : = ⟨ f i , K ± � U ≤ 0 � 1 ≤ i ≤ m − 1 , 1 ≤ j ≤ m ⟩ alg. ⊂ U q ( gl m ) � j ) · ρ ( U ≥ 0 � S n , 1 = ρ ( U ≤ 0 ) q q . Theorem (Du-Rui) . ∃ S ≥ 0 n , r , ∃ S ≤ 0 n , r ⊂ alg. S n , r s.t. S n , r = S ≤ 0 n , r · S ≥ 0 n , r . Moreover, S ≤ 0 n , r � ρ ( U ≤ 0 S ≥ 0 n , r � ρ ( U ≥ 0 ) , ) . q q . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 5 / 25

  8. Borel subalgebras r = 1 e i , f i ( 1 ≤ i ≤ m − 1 ), K ± j ,( 1 ≤ j ≤ m ) : Chevalley gen. of U q ( gl m ) . Recall ρ : U q ( gl m ) ↠ S n , 1 . � U ≥ 0 q : = ⟨ e i , K ± � 1 ≤ i ≤ m − 1 , 1 ≤ j ≤ m ⟩ alg. ⊂ U q ( gl m ) � j q : = ⟨ f i , K ± � U ≤ 0 � 1 ≤ i ≤ m − 1 , 1 ≤ j ≤ m ⟩ alg. ⊂ U q ( gl m ) � j ) · ρ ( U ≥ 0 � S n , 1 = ρ ( U ≤ 0 ) q q . Theorem (Du-Rui) . ∃ S ≥ 0 n , r , ∃ S ≤ 0 n , r ⊂ alg. S n , r s.t. S n , r = S ≤ 0 n , r · S ≥ 0 n , r . Moreover, S ≤ 0 n , r � ρ ( U ≤ 0 S ≥ 0 n , r � ρ ( U ≥ 0 ) , ) . q q . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 5 / 25

  9. Borel subalgebras r = 1 e i , f i ( 1 ≤ i ≤ m − 1 ), K ± j ,( 1 ≤ j ≤ m ) : Chevalley gen. of U q ( gl m ) . Recall ρ : U q ( gl m ) ↠ S n , 1 . � U ≥ 0 q : = ⟨ e i , K ± � 1 ≤ i ≤ m − 1 , 1 ≤ j ≤ m ⟩ alg. ⊂ U q ( gl m ) � j q : = ⟨ f i , K ± � U ≤ 0 � 1 ≤ i ≤ m − 1 , 1 ≤ j ≤ m ⟩ alg. ⊂ U q ( gl m ) � j ) · ρ ( U ≥ 0 � S n , 1 = ρ ( U ≤ 0 ) q q . Theorem (Du-Rui) . ∃ S ≥ 0 n , r , ∃ S ≤ 0 n , r ⊂ alg. S n , r s.t. S n , r = S ≤ 0 n , r · S ≥ 0 n , r . Moreover, S ≤ 0 n , r � ρ ( U ≤ 0 S ≥ 0 n , r � ρ ( U ≥ 0 ) , ) . q q . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 5 / 25

  10. Borel subalgebras r = 1 e i , f i ( 1 ≤ i ≤ m − 1 ), K ± j ,( 1 ≤ j ≤ m ) : Chevalley gen. of U q ( gl m ) . Recall ρ : U q ( gl m ) ↠ S n , 1 . � U ≥ 0 q : = ⟨ e i , K ± � 1 ≤ i ≤ m − 1 , 1 ≤ j ≤ m ⟩ alg. ⊂ U q ( gl m ) � j q : = ⟨ f i , K ± � U ≤ 0 � 1 ≤ i ≤ m − 1 , 1 ≤ j ≤ m ⟩ alg. ⊂ U q ( gl m ) � j ) · ρ ( U ≥ 0 � S n , 1 = ρ ( U ≤ 0 ) q q . Theorem (Du-Rui) . ∃ S ≥ 0 n , r , ∃ S ≤ 0 n , r ⊂ alg. S n , r s.t. S n , r = S ≤ 0 n , r · S ≥ 0 n , r . Moreover, S ≤ 0 n , r � ρ ( U ≤ 0 S ≥ 0 n , r � ρ ( U ≥ 0 ) , ) . q q . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 5 / 25

  11. Borel subalgebras r = 1 e i , f i ( 1 ≤ i ≤ m − 1 ), K ± j ,( 1 ≤ j ≤ m ) : Chevalley gen. of U q ( gl m ) . Recall ρ : U q ( gl m ) ↠ S n , 1 . � U ≥ 0 q : = ⟨ e i , K ± � 1 ≤ i ≤ m − 1 , 1 ≤ j ≤ m ⟩ alg. ⊂ U q ( gl m ) � j q : = ⟨ f i , K ± � U ≤ 0 � 1 ≤ i ≤ m − 1 , 1 ≤ j ≤ m ⟩ alg. ⊂ U q ( gl m ) � j ) · ρ ( U ≥ 0 � S n , 1 = ρ ( U ≤ 0 ) q q . Theorem (Du-Rui) . ∃ S ≥ 0 n , r , ∃ S ≤ 0 n , r ⊂ alg. S n , r s.t. S n , r = S ≤ 0 n , r · S ≥ 0 n , r . Moreover, S ≤ 0 n , r � ρ ( U ≤ 0 S ≥ 0 n , r � ρ ( U ≥ 0 ) , ) . q q . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 5 / 25

  12. Borel subalgebras r = 1 e i , f i ( 1 ≤ i ≤ m − 1 ), K ± j ,( 1 ≤ j ≤ m ) : Chevalley gen. of U q ( gl m ) . Recall ρ : U q ( gl m ) ↠ S n , 1 . � U ≥ 0 q : = ⟨ e i , K ± � 1 ≤ i ≤ m − 1 , 1 ≤ j ≤ m ⟩ alg. ⊂ U q ( gl m ) � j q : = ⟨ f i , K ± � U ≤ 0 � 1 ≤ i ≤ m − 1 , 1 ≤ j ≤ m ⟩ alg. ⊂ U q ( gl m ) � j ) · ρ ( U ≥ 0 � S n , 1 = ρ ( U ≤ 0 ) q q . Theorem (Du-Rui) . ∃ S ≥ 0 n , r , ∃ S ≤ 0 n , r ⊂ alg. S n , r s.t. S n , r = S ≤ 0 n , r · S ≥ 0 n , r . Moreover, S ≤ 0 n , r � ρ ( U ≤ 0 S ≥ 0 n , r � ρ ( U ≥ 0 ) , ) . q q . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 5 / 25

  13. Cartan data m = ( m 1 , . . . , m r ) ∈ Z r s.t. m k ≥ n . Put m = m 1 + · · · + m r . 1:1 � { 1 , 2 , . . . , m } ←→ Γ ( m ) : = { ( i , k ) � 1 ≤ i ≤ m k , 1 ≤ k ≤ r } � ∈ ∈ ∑ k − 1 l = 1 m l + i ←→ ( i , k ) 1:1 ←→ Γ ′ ( m ) : = Γ ( m ) \ { ( m r , r ) } { 1 , 2 , . . . , m − 1 } ⊕ m ⊕ ( i , k ) ∈ Γ ( m ) Z ε ( i , k ) : weight lattice of gl m . P : = i = 1 Z ε i = ⊕ m − 1 ⊕ Q : = i = 1 Z α i = ( i , k ) ∈ Γ ′ ( m ) Z α ( i , k ) : root lattice of gl m . ( α i = ε i − ε i + 1 : simple root) For ( i , k ) , ( j , l ) ∈ Γ ( m ) , put  1 if ( j , l ) = ( i , k )      a ( i , k )( j , l ) =  − 1 if ( j , l ) = ( i + 1 , k ) ( note ( m k + 1 , k ) = (1 , k + 1))     otherwise 0   . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 6 / 25

  14. Cartan data m = ( m 1 , . . . , m r ) ∈ Z r s.t. m k ≥ n . Put m = m 1 + · · · + m r . 1:1 � { 1 , 2 , . . . , m } ←→ Γ ( m ) : = { ( i , k ) � 1 ≤ i ≤ m k , 1 ≤ k ≤ r } � ∈ ∈ ∑ k − 1 l = 1 m l + i ←→ ( i , k ) 1:1 ←→ Γ ′ ( m ) : = Γ ( m ) \ { ( m r , r ) } { 1 , 2 , . . . , m − 1 } ⊕ m ⊕ ( i , k ) ∈ Γ ( m ) Z ε ( i , k ) : weight lattice of gl m . P : = i = 1 Z ε i = ⊕ m − 1 ⊕ Q : = i = 1 Z α i = ( i , k ) ∈ Γ ′ ( m ) Z α ( i , k ) : root lattice of gl m . ( α i = ε i − ε i + 1 : simple root) For ( i , k ) , ( j , l ) ∈ Γ ( m ) , put  1 if ( j , l ) = ( i , k )      a ( i , k )( j , l ) =  − 1 if ( j , l ) = ( i + 1 , k ) ( note ( m k + 1 , k ) = (1 , k + 1))     otherwise 0   . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 6 / 25

  15. Cartan data m = ( m 1 , . . . , m r ) ∈ Z r s.t. m k ≥ n . Put m = m 1 + · · · + m r . 1:1 � { 1 , 2 , . . . , m } ←→ Γ ( m ) : = { ( i , k ) � 1 ≤ i ≤ m k , 1 ≤ k ≤ r } � ∈ ∈ ∑ k − 1 l = 1 m l + i ←→ ( i , k ) 1:1 ←→ Γ ′ ( m ) : = Γ ( m ) \ { ( m r , r ) } { 1 , 2 , . . . , m − 1 } ⊕ m ⊕ ( i , k ) ∈ Γ ( m ) Z ε ( i , k ) : weight lattice of gl m . P : = i = 1 Z ε i = ⊕ m − 1 ⊕ Q : = i = 1 Z α i = ( i , k ) ∈ Γ ′ ( m ) Z α ( i , k ) : root lattice of gl m . ( α i = ε i − ε i + 1 : simple root) For ( i , k ) , ( j , l ) ∈ Γ ( m ) , put  1 if ( j , l ) = ( i , k )      a ( i , k )( j , l ) =  − 1 if ( j , l ) = ( i + 1 , k ) ( note ( m k + 1 , k ) = (1 , k + 1))     otherwise 0   . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 6 / 25

  16. Cartan data m = ( m 1 , . . . , m r ) ∈ Z r s.t. m k ≥ n . Put m = m 1 + · · · + m r . 1:1 � { 1 , 2 , . . . , m } ←→ Γ ( m ) : = { ( i , k ) � 1 ≤ i ≤ m k , 1 ≤ k ≤ r } � ∈ ∈ ∑ k − 1 l = 1 m l + i ←→ ( i , k ) 1:1 ←→ Γ ′ ( m ) : = Γ ( m ) \ { ( m r , r ) } { 1 , 2 , . . . , m − 1 } ⊕ m ⊕ ( i , k ) ∈ Γ ( m ) Z ε ( i , k ) : weight lattice of gl m . P : = i = 1 Z ε i = ⊕ m − 1 ⊕ Q : = i = 1 Z α i = ( i , k ) ∈ Γ ′ ( m ) Z α ( i , k ) : root lattice of gl m . ( α i = ε i − ε i + 1 : simple root) For ( i , k ) , ( j , l ) ∈ Γ ( m ) , put  1 if ( j , l ) = ( i , k )      a ( i , k )( j , l ) =  − 1 if ( j , l ) = ( i + 1 , k ) ( note ( m k + 1 , k ) = (1 , k + 1))     otherwise 0   . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 6 / 25

  17. Cartan data m = ( m 1 , . . . , m r ) ∈ Z r s.t. m k ≥ n . Put m = m 1 + · · · + m r . 1:1 � { 1 , 2 , . . . , m } ←→ Γ ( m ) : = { ( i , k ) � 1 ≤ i ≤ m k , 1 ≤ k ≤ r } � ∈ ∈ ∑ k − 1 l = 1 m l + i ←→ ( i , k ) 1:1 ←→ Γ ′ ( m ) : = Γ ( m ) \ { ( m r , r ) } { 1 , 2 , . . . , m − 1 } ⊕ m ⊕ ( i , k ) ∈ Γ ( m ) Z ε ( i , k ) : weight lattice of gl m . P : = i = 1 Z ε i = ⊕ m − 1 ⊕ Q : = i = 1 Z α i = ( i , k ) ∈ Γ ′ ( m ) Z α ( i , k ) : root lattice of gl m . ( α i = ε i − ε i + 1 : simple root) For ( i , k ) , ( j , l ) ∈ Γ ( m ) , put  1 if ( j , l ) = ( i , k )      a ( i , k )( j , l ) =  − 1 if ( j , l ) = ( i + 1 , k ) ( note ( m k + 1 , k ) = (1 , k + 1))     otherwise 0   . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 6 / 25

  18. Cartan data m = ( m 1 , . . . , m r ) ∈ Z r s.t. m k ≥ n . Put m = m 1 + · · · + m r . 1:1 � { 1 , 2 , . . . , m } ←→ Γ ( m ) : = { ( i , k ) � 1 ≤ i ≤ m k , 1 ≤ k ≤ r } � ∈ ∈ ∑ k − 1 l = 1 m l + i ←→ ( i , k ) 1:1 ←→ Γ ′ ( m ) : = Γ ( m ) \ { ( m r , r ) } { 1 , 2 , . . . , m − 1 } ⊕ m ⊕ ( i , k ) ∈ Γ ( m ) Z ε ( i , k ) : weight lattice of gl m . P : = i = 1 Z ε i = ⊕ m − 1 ⊕ Q : = i = 1 Z α i = ( i , k ) ∈ Γ ′ ( m ) Z α ( i , k ) : root lattice of gl m . ( α i = ε i − ε i + 1 : simple root) For ( i , k ) , ( j , l ) ∈ Γ ( m ) , put  1 if ( j , l ) = ( i , k )      a ( i , k )( j , l ) =  − 1 if ( j , l ) = ( i + 1 , k ) ( note ( m k + 1 , k ) = (1 , k + 1))     otherwise 0   . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 6 / 25

  19. generators of S n , r ⊕ Z ≥ 0 ε ( i , k ) ⊂ P P ≥ 0 : = ( i , k ) ∈ Γ ( m )    �  ∑ ∑   Λ n , r ( m ) : =  λ = λ ( i , k ) ε ( i , k ) ∈ P ≥ 0 � λ ( i , k ) = n   �   �    ( i , k ) ∈ Γ ( m ) ( i , k ) ∈ Γ ( m ) Denote λ ∈ Λ n , r ( m ) by λ = ( λ [1] , . . . , λ [ r ] ) , where λ [ k ] = ( λ (1 , k ) , λ (2 , k ) , . . . , λ ( m k , k ) ) . Recall S n , r : = S ≤ 0 n , r · S ≥ 0 and S ≤ 0 n , r � ρ ( U ≤ 0 S ≥ 0 n , r � ρ ( U ≥ 0 q ) , q ) n , r ρ : U q ( gl m ) ↠ S n , 1 = ρ ( U ≤ 0 q ) · ρ ( U ≥ 0 q ) . ( ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) ) by Define X ± ( i , k ) , 0 , K ± ( j , l ) ∈ S n , r ( i , k ) , 0 : image of e ( i , k ) in S ≥ 0 n , r � ρ ( U ≥ 0 X + q ) . X − ( i , k ) , 0 : image of f ( i , k ) in S ≤ 0 n , r � ρ ( U ≤ 0 q ) . K ± ( j , l ) : image of K ± ( j , l ) in S ≥ 0 n , r � ρ ( U ≥ 0 q ) or S ≤ 0 n , r � ρ ( U ≤ 0 q ) . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 7 / 25

  20. generators of S n , r ⊕ Z ≥ 0 ε ( i , k ) ⊂ P P ≥ 0 : = ( i , k ) ∈ Γ ( m )    �  ∑ ∑   Λ n , r ( m ) : =  λ = λ ( i , k ) ε ( i , k ) ∈ P ≥ 0 � λ ( i , k ) = n   �   �    ( i , k ) ∈ Γ ( m ) ( i , k ) ∈ Γ ( m ) Denote λ ∈ Λ n , r ( m ) by λ = ( λ [1] , . . . , λ [ r ] ) , where λ [ k ] = ( λ (1 , k ) , λ (2 , k ) , . . . , λ ( m k , k ) ) . Recall S n , r : = S ≤ 0 n , r · S ≥ 0 and S ≤ 0 n , r � ρ ( U ≤ 0 S ≥ 0 n , r � ρ ( U ≥ 0 q ) , q ) n , r ρ : U q ( gl m ) ↠ S n , 1 = ρ ( U ≤ 0 q ) · ρ ( U ≥ 0 q ) . ( ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) ) by Define X ± ( i , k ) , 0 , K ± ( j , l ) ∈ S n , r ( i , k ) , 0 : image of e ( i , k ) in S ≥ 0 n , r � ρ ( U ≥ 0 X + q ) . X − ( i , k ) , 0 : image of f ( i , k ) in S ≤ 0 n , r � ρ ( U ≤ 0 q ) . K ± ( j , l ) : image of K ± ( j , l ) in S ≥ 0 n , r � ρ ( U ≥ 0 q ) or S ≤ 0 n , r � ρ ( U ≤ 0 q ) . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 7 / 25

  21. generators of S n , r ⊕ Z ≥ 0 ε ( i , k ) ⊂ P P ≥ 0 : = ( i , k ) ∈ Γ ( m )    �  ∑ ∑   Λ n , r ( m ) : =  λ = λ ( i , k ) ε ( i , k ) ∈ P ≥ 0 � λ ( i , k ) = n   �   �    ( i , k ) ∈ Γ ( m ) ( i , k ) ∈ Γ ( m ) Denote λ ∈ Λ n , r ( m ) by λ = ( λ [1] , . . . , λ [ r ] ) , where λ [ k ] = ( λ (1 , k ) , λ (2 , k ) , . . . , λ ( m k , k ) ) . Recall S n , r : = S ≤ 0 n , r · S ≥ 0 and S ≤ 0 n , r � ρ ( U ≤ 0 S ≥ 0 n , r � ρ ( U ≥ 0 q ) , q ) n , r ρ : U q ( gl m ) ↠ S n , 1 = ρ ( U ≤ 0 q ) · ρ ( U ≥ 0 q ) . ( ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) ) by Define X ± ( i , k ) , 0 , K ± ( j , l ) ∈ S n , r ( i , k ) , 0 : image of e ( i , k ) in S ≥ 0 n , r � ρ ( U ≥ 0 X + q ) . X − ( i , k ) , 0 : image of f ( i , k ) in S ≤ 0 n , r � ρ ( U ≤ 0 q ) . K ± ( j , l ) : image of K ± ( j , l ) in S ≥ 0 n , r � ρ ( U ≥ 0 q ) or S ≤ 0 n , r � ρ ( U ≤ 0 q ) . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 7 / 25

  22. generators of S n , r ⊕ Z ≥ 0 ε ( i , k ) ⊂ P P ≥ 0 : = ( i , k ) ∈ Γ ( m )    �  ∑ ∑   Λ n , r ( m ) : =  λ = λ ( i , k ) ε ( i , k ) ∈ P ≥ 0 � λ ( i , k ) = n   �   �    ( i , k ) ∈ Γ ( m ) ( i , k ) ∈ Γ ( m ) Denote λ ∈ Λ n , r ( m ) by λ = ( λ [1] , . . . , λ [ r ] ) , where λ [ k ] = ( λ (1 , k ) , λ (2 , k ) , . . . , λ ( m k , k ) ) . Recall S n , r : = S ≤ 0 n , r · S ≥ 0 and S ≤ 0 n , r � ρ ( U ≤ 0 S ≥ 0 n , r � ρ ( U ≥ 0 q ) , q ) n , r ρ : U q ( gl m ) ↠ S n , 1 = ρ ( U ≤ 0 q ) · ρ ( U ≥ 0 q ) . ( ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) ) by Define X ± ( i , k ) , 0 , K ± ( j , l ) ∈ S n , r ( i , k ) , 0 : image of e ( i , k ) in S ≥ 0 n , r � ρ ( U ≥ 0 X + q ) . X − ( i , k ) , 0 : image of f ( i , k ) in S ≤ 0 n , r � ρ ( U ≤ 0 q ) . K ± ( j , l ) : image of K ± ( j , l ) in S ≥ 0 n , r � ρ ( U ≥ 0 q ) or S ≤ 0 n , r � ρ ( U ≤ 0 q ) . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 7 / 25

  23. generators of S n , r ⊕ Z ≥ 0 ε ( i , k ) ⊂ P P ≥ 0 : = ( i , k ) ∈ Γ ( m )    �  ∑ ∑   Λ n , r ( m ) : =  λ = λ ( i , k ) ε ( i , k ) ∈ P ≥ 0 � λ ( i , k ) = n   �   �    ( i , k ) ∈ Γ ( m ) ( i , k ) ∈ Γ ( m ) Denote λ ∈ Λ n , r ( m ) by λ = ( λ [1] , . . . , λ [ r ] ) , where λ [ k ] = ( λ (1 , k ) , λ (2 , k ) , . . . , λ ( m k , k ) ) . Recall S n , r : = S ≤ 0 n , r · S ≥ 0 and S ≤ 0 n , r � ρ ( U ≤ 0 S ≥ 0 n , r � ρ ( U ≥ 0 q ) , q ) n , r ρ : U q ( gl m ) ↠ S n , 1 = ρ ( U ≤ 0 q ) · ρ ( U ≥ 0 q ) . ( ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) ) by Define X ± ( i , k ) , 0 , K ± ( j , l ) ∈ S n , r ( i , k ) , 0 : image of e ( i , k ) in S ≥ 0 n , r � ρ ( U ≥ 0 X + q ) . X − ( i , k ) , 0 : image of f ( i , k ) in S ≤ 0 n , r � ρ ( U ≤ 0 q ) . K ± ( j , l ) : image of K ± ( j , l ) in S ≥ 0 n , r � ρ ( U ≥ 0 q ) or S ≤ 0 n , r � ρ ( U ≤ 0 q ) . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 7 / 25

  24. generators of S n , r ⊕ Z ≥ 0 ε ( i , k ) ⊂ P P ≥ 0 : = ( i , k ) ∈ Γ ( m )    �  ∑ ∑   Λ n , r ( m ) : =  λ = λ ( i , k ) ε ( i , k ) ∈ P ≥ 0 � λ ( i , k ) = n   �   �    ( i , k ) ∈ Γ ( m ) ( i , k ) ∈ Γ ( m ) Denote λ ∈ Λ n , r ( m ) by λ = ( λ [1] , . . . , λ [ r ] ) , where λ [ k ] = ( λ (1 , k ) , λ (2 , k ) , . . . , λ ( m k , k ) ) . Recall S n , r : = S ≤ 0 n , r · S ≥ 0 and S ≤ 0 n , r � ρ ( U ≤ 0 S ≥ 0 n , r � ρ ( U ≥ 0 q ) , q ) n , r ρ : U q ( gl m ) ↠ S n , 1 = ρ ( U ≤ 0 q ) · ρ ( U ≥ 0 q ) . ( ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) ) by Define X ± ( i , k ) , 0 , K ± ( j , l ) ∈ S n , r ( i , k ) , 0 : image of e ( i , k ) in S ≥ 0 n , r � ρ ( U ≥ 0 X + q ) . X − ( i , k ) , 0 : image of f ( i , k ) in S ≤ 0 n , r � ρ ( U ≤ 0 q ) . K ± ( j , l ) : image of K ± ( j , l ) in S ≥ 0 n , r � ρ ( U ≥ 0 q ) or S ≤ 0 n , r � ρ ( U ≤ 0 q ) . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 7 / 25

  25. generators of S n , r ⊕ Z ≥ 0 ε ( i , k ) ⊂ P P ≥ 0 : = ( i , k ) ∈ Γ ( m )    �  ∑ ∑   Λ n , r ( m ) : =  λ = λ ( i , k ) ε ( i , k ) ∈ P ≥ 0 � λ ( i , k ) = n   �   �    ( i , k ) ∈ Γ ( m ) ( i , k ) ∈ Γ ( m ) Denote λ ∈ Λ n , r ( m ) by λ = ( λ [1] , . . . , λ [ r ] ) , where λ [ k ] = ( λ (1 , k ) , λ (2 , k ) , . . . , λ ( m k , k ) ) . Recall S n , r : = S ≤ 0 n , r · S ≥ 0 and S ≤ 0 n , r � ρ ( U ≤ 0 S ≥ 0 n , r � ρ ( U ≥ 0 q ) , q ) n , r ρ : U q ( gl m ) ↠ S n , 1 = ρ ( U ≤ 0 q ) · ρ ( U ≥ 0 q ) . ( ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) ) by Define X ± ( i , k ) , 0 , K ± ( j , l ) ∈ S n , r ( i , k ) , 0 : image of e ( i , k ) in S ≥ 0 n , r � ρ ( U ≥ 0 X + q ) . X − ( i , k ) , 0 : image of f ( i , k ) in S ≤ 0 n , r � ρ ( U ≤ 0 q ) . K ± ( j , l ) : image of K ± ( j , l ) in S ≥ 0 n , r � ρ ( U ≥ 0 q ) or S ≤ 0 n , r � ρ ( U ≤ 0 q ) . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 7 / 25

  26. generators of S n , r ⊕ Z ≥ 0 ε ( i , k ) ⊂ P P ≥ 0 : = ( i , k ) ∈ Γ ( m )    �  ∑ ∑   Λ n , r ( m ) : =  λ = λ ( i , k ) ε ( i , k ) ∈ P ≥ 0 � λ ( i , k ) = n   �   �    ( i , k ) ∈ Γ ( m ) ( i , k ) ∈ Γ ( m ) Denote λ ∈ Λ n , r ( m ) by λ = ( λ [1] , . . . , λ [ r ] ) , where λ [ k ] = ( λ (1 , k ) , λ (2 , k ) , . . . , λ ( m k , k ) ) . Recall S n , r : = S ≤ 0 n , r · S ≥ 0 and S ≤ 0 n , r � ρ ( U ≤ 0 S ≥ 0 n , r � ρ ( U ≥ 0 q ) , q ) n , r ρ : U q ( gl m ) ↠ S n , 1 = ρ ( U ≤ 0 q ) · ρ ( U ≥ 0 q ) . ( ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) ) by Define X ± ( i , k ) , 0 , K ± ( j , l ) ∈ S n , r ( i , k ) , 0 : image of e ( i , k ) in S ≥ 0 n , r � ρ ( U ≥ 0 X + q ) . X − ( i , k ) , 0 : image of f ( i , k ) in S ≤ 0 n , r � ρ ( U ≤ 0 q ) . K ± ( j , l ) : image of K ± ( j , l ) in S ≥ 0 n , r � ρ ( U ≥ 0 q ) or S ≤ 0 n , r � ρ ( U ≤ 0 q ) . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 7 / 25

  27. Symmetric polynomials Φ ± t Define Φ ± t ( X 1 , . . . , X k ) ∈ Z [ q , q − 1 ][ X 1 , . . . , X k ] ( t ≥ 1 ) by Φ ± 1 ( X 1 , . . . , X k ) : = X 1 + X 2 + · · · + X k . Φ ± t + 1 ( X 1 , . . . , X k ) k ∑ ( ) Φ ± t ( X 1 , . . . , X s ) X s − q ∓ 2 Φ ± : = X t + 1 + t ( X 1 , . . . , X s − 1 ) X s 1 s = 2 ( ) Z [ q , q − 1 ][ X 1 , . . . , X s ] ֒ → Z [ q , q − 1 ][ X 1 , . . . , X k ] , X i �→ X i . Lemma . Φ ± t ( X 1 , . . . , X k ) ∈ Z [ q , q − 1 ][ X 1 , . . . , X k ] S k . . . Remark . Φ ± t ( X 1 , . . . , X k − 1 , 0) = Φ ± t ( X 1 , . . . , X k − 1 ) � ∃ Φ ± t ( X 1 , X 2 , . . . ) : symmetric function s.t. Φ ± t ( X 1 , . . . , X k , 0 , . . . ) = Φ ± t ( X 1 , . . . , X k ) . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 8 / 25

  28. Symmetric polynomials Φ ± t Define Φ ± t ( X 1 , . . . , X k ) ∈ Z [ q , q − 1 ][ X 1 , . . . , X k ] ( t ≥ 1 ) by Φ ± 1 ( X 1 , . . . , X k ) : = X 1 + X 2 + · · · + X k . Φ ± t + 1 ( X 1 , . . . , X k ) k ∑ ( ) Φ ± t ( X 1 , . . . , X s ) X s − q ∓ 2 Φ ± : = X t + 1 + t ( X 1 , . . . , X s − 1 ) X s 1 s = 2 ( ) Z [ q , q − 1 ][ X 1 , . . . , X s ] ֒ → Z [ q , q − 1 ][ X 1 , . . . , X k ] , X i �→ X i . Lemma . Φ ± t ( X 1 , . . . , X k ) ∈ Z [ q , q − 1 ][ X 1 , . . . , X k ] S k . . . Remark . Φ ± t ( X 1 , . . . , X k − 1 , 0) = Φ ± t ( X 1 , . . . , X k − 1 ) � ∃ Φ ± t ( X 1 , X 2 , . . . ) : symmetric function s.t. Φ ± t ( X 1 , . . . , X k , 0 , . . . ) = Φ ± t ( X 1 , . . . , X k ) . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 8 / 25

  29. Symmetric polynomials Φ ± t Define Φ ± t ( X 1 , . . . , X k ) ∈ Z [ q , q − 1 ][ X 1 , . . . , X k ] ( t ≥ 1 ) by Φ ± 1 ( X 1 , . . . , X k ) : = X 1 + X 2 + · · · + X k . Φ ± t + 1 ( X 1 , . . . , X k ) k ∑ ( ) Φ ± t ( X 1 , . . . , X s ) X s − q ∓ 2 Φ ± : = X t + 1 + t ( X 1 , . . . , X s − 1 ) X s 1 s = 2 ( ) Z [ q , q − 1 ][ X 1 , . . . , X s ] ֒ → Z [ q , q − 1 ][ X 1 , . . . , X k ] , X i �→ X i . Lemma . Φ ± t ( X 1 , . . . , X k ) ∈ Z [ q , q − 1 ][ X 1 , . . . , X k ] S k . . . Remark . Φ ± t ( X 1 , . . . , X k − 1 , 0) = Φ ± t ( X 1 , . . . , X k − 1 ) � ∃ Φ ± t ( X 1 , X 2 , . . . ) : symmetric function s.t. Φ ± t ( X 1 , . . . , X k , 0 , . . . ) = Φ ± t ( X 1 , . . . , X k ) . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 8 / 25

  30. Symmetric polynomials Φ ± t Define Φ ± t ( X 1 , . . . , X k ) ∈ Z [ q , q − 1 ][ X 1 , . . . , X k ] ( t ≥ 1 ) by Φ ± 1 ( X 1 , . . . , X k ) : = X 1 + X 2 + · · · + X k . Φ ± t + 1 ( X 1 , . . . , X k ) k ∑ ( ) Φ ± t ( X 1 , . . . , X s ) X s − q ∓ 2 Φ ± : = X t + 1 + t ( X 1 , . . . , X s − 1 ) X s 1 s = 2 ( ) Z [ q , q − 1 ][ X 1 , . . . , X s ] ֒ → Z [ q , q − 1 ][ X 1 , . . . , X k ] , X i �→ X i . Lemma . Φ ± t ( X 1 , . . . , X k ) ∈ Z [ q , q − 1 ][ X 1 , . . . , X k ] S k . . . Remark . Φ ± t ( X 1 , . . . , X k − 1 , 0) = Φ ± t ( X 1 , . . . , X k − 1 ) � ∃ Φ ± t ( X 1 , X 2 , . . . ) : symmetric function s.t. Φ ± t ( X 1 , . . . , X k , 0 , . . . ) = Φ ± t ( X 1 , . . . , X k ) . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 8 / 25

  31. Symmetric polynomials Φ ± t Define Φ ± t ( X 1 , . . . , X k ) ∈ Z [ q , q − 1 ][ X 1 , . . . , X k ] ( t ≥ 1 ) by Φ ± 1 ( X 1 , . . . , X k ) : = X 1 + X 2 + · · · + X k . Φ ± t + 1 ( X 1 , . . . , X k ) k ∑ ( ) Φ ± t ( X 1 , . . . , X s ) X s − q ∓ 2 Φ ± : = X t + 1 + t ( X 1 , . . . , X s − 1 ) X s 1 s = 2 ( ) Z [ q , q − 1 ][ X 1 , . . . , X s ] ֒ → Z [ q , q − 1 ][ X 1 , . . . , X k ] , X i �→ X i . Lemma . Φ ± t ( X 1 , . . . , X k ) ∈ Z [ q , q − 1 ][ X 1 , . . . , X k ] S k . . . Remark . Φ ± t ( X 1 , . . . , X k − 1 , 0) = Φ ± t ( X 1 , . . . , X k − 1 ) � ∃ Φ ± t ( X 1 , X 2 , . . . ) : symmetric function s.t. Φ ± t ( X 1 , . . . , X k , 0 , . . . ) = Φ ± t ( X 1 , . . . , X k ) . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 8 / 25

  32. generators of S n , r ( ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) ) . We already defined X ± ( i , k ) , 0 , K ± ( j , l ) ∈ S n , r ( ⊕ ) Recall S n , r = End H n , r µ ∈ Λ n , r ( m ) m µ · H n , r . ( ( j , l ) ∈ Γ ( m ) , t ≥ 1 ) by Define H ± ( j , l ) , t ∈ S n , r 1 H + q − t + 1 ( q − q − 1 ) t − 1 m µ Φ + ( j , l ) , t ( m µ ) : = t ( L N , L N − 1 , . . . , L N − µ ( l ) j + 1 ) , − 1 H − q t − 1 ( q − q − 1 ) t − 1 m µ Φ − ( j , l ) , t ( m µ ) : = t ( L N , L N − 1 , . . . , L N − µ ( l ) j + 1 ) , where N = ∑ l − 1 s = 1 | µ [ s ] | + ∑ j i = 1 µ ( i , l ) . ( ( i , k ) ∈ Γ ′ ( m ) , t ≥ 1 ) by Define X ± ( i , k ) , t ∈ S n , r 1 ( ) X ± ( i , k ) , 1 X ± ( i , k ) , t − X ± H + ( i , k ) , t H + ( i , k ) , t + 1 : = . ( i , k ) , 1 q − q − 1 . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 9 / 25

  33. generators of S n , r ( ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) ) . We already defined X ± ( i , k ) , 0 , K ± ( j , l ) ∈ S n , r ( ⊕ ) Recall S n , r = End H n , r µ ∈ Λ n , r ( m ) m µ · H n , r . ( ( j , l ) ∈ Γ ( m ) , t ≥ 1 ) by Define H ± ( j , l ) , t ∈ S n , r 1 H + q − t + 1 ( q − q − 1 ) t − 1 m µ Φ + ( j , l ) , t ( m µ ) : = t ( L N , L N − 1 , . . . , L N − µ ( l ) j + 1 ) , − 1 H − q t − 1 ( q − q − 1 ) t − 1 m µ Φ − ( j , l ) , t ( m µ ) : = t ( L N , L N − 1 , . . . , L N − µ ( l ) j + 1 ) , where N = ∑ l − 1 s = 1 | µ [ s ] | + ∑ j i = 1 µ ( i , l ) . ( ( i , k ) ∈ Γ ′ ( m ) , t ≥ 1 ) by Define X ± ( i , k ) , t ∈ S n , r 1 ( ) X ± ( i , k ) , 1 X ± ( i , k ) , t − X ± H + ( i , k ) , t H + ( i , k ) , t + 1 : = . ( i , k ) , 1 q − q − 1 . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 9 / 25

  34. generators of S n , r ( ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) ) . We already defined X ± ( i , k ) , 0 , K ± ( j , l ) ∈ S n , r ( ⊕ ) Recall S n , r = End H n , r µ ∈ Λ n , r ( m ) m µ · H n , r . ( ( j , l ) ∈ Γ ( m ) , t ≥ 1 ) by Define H ± ( j , l ) , t ∈ S n , r 1 H + q − t + 1 ( q − q − 1 ) t − 1 m µ Φ + ( j , l ) , t ( m µ ) : = t ( L N , L N − 1 , . . . , L N − µ ( l ) j + 1 ) , − 1 H − q t − 1 ( q − q − 1 ) t − 1 m µ Φ − ( j , l ) , t ( m µ ) : = t ( L N , L N − 1 , . . . , L N − µ ( l ) j + 1 ) , where N = ∑ l − 1 s = 1 | µ [ s ] | + ∑ j i = 1 µ ( i , l ) . ( ( i , k ) ∈ Γ ′ ( m ) , t ≥ 1 ) by Define X ± ( i , k ) , t ∈ S n , r 1 ( ) X ± ( i , k ) , 1 X ± ( i , k ) , t − X ± H + ( i , k ) , t H + ( i , k ) , t + 1 : = . ( i , k ) , 1 q − q − 1 . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 9 / 25

  35. generators of S n , r ( ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) ) . We already defined X ± ( i , k ) , 0 , K ± ( j , l ) ∈ S n , r ( ⊕ ) Recall S n , r = End H n , r µ ∈ Λ n , r ( m ) m µ · H n , r . ( ( j , l ) ∈ Γ ( m ) , t ≥ 1 ) by Define H ± ( j , l ) , t ∈ S n , r 1 H + q − t + 1 ( q − q − 1 ) t − 1 m µ Φ + ( j , l ) , t ( m µ ) : = t ( L N , L N − 1 , . . . , L N − µ ( l ) j + 1 ) , − 1 H − q t − 1 ( q − q − 1 ) t − 1 m µ Φ − ( j , l ) , t ( m µ ) : = t ( L N , L N − 1 , . . . , L N − µ ( l ) j + 1 ) , where N = ∑ l − 1 s = 1 | µ [ s ] | + ∑ j i = 1 µ ( i , l ) . ( ( i , k ) ∈ Γ ′ ( m ) , t ≥ 1 ) by Define X ± ( i , k ) , t ∈ S n , r 1 ( ) X ± ( i , k ) , 1 X ± ( i , k ) , t − X ± H + ( i , k ) , t H + ( i , k ) , t + 1 : = . ( i , k ) , 1 q − q − 1 . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 9 / 25

  36. generators of S n , r ( ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) ) . We already defined X ± ( i , k ) , 0 , K ± ( j , l ) ∈ S n , r ( ⊕ ) Recall S n , r = End H n , r µ ∈ Λ n , r ( m ) m µ · H n , r . ( ( j , l ) ∈ Γ ( m ) , t ≥ 1 ) by Define H ± ( j , l ) , t ∈ S n , r 1 H + q − t + 1 ( q − q − 1 ) t − 1 m µ Φ + ( j , l ) , t ( m µ ) : = t ( L N , L N − 1 , . . . , L N − µ ( l ) j + 1 ) , − 1 H − q t − 1 ( q − q − 1 ) t − 1 m µ Φ − ( j , l ) , t ( m µ ) : = t ( L N , L N − 1 , . . . , L N − µ ( l ) j + 1 ) , where N = ∑ l − 1 s = 1 | µ [ s ] | + ∑ j i = 1 µ ( i , l ) . ( ( i , k ) ∈ Γ ′ ( m ) , t ≥ 1 ) by Define X ± ( i , k ) , t ∈ S n , r 1 ( ) X ± ( i , k ) , 1 X ± ( i , k ) , t − X ± H + ( i , k ) , t H + ( i , k ) , t + 1 : = . ( i , k ) , 1 q − q − 1 . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 9 / 25

  37. Algebra U . Definition . m = ( m 1 , . . . , m r ) ∈ Z r > 0 . U : associative algebra over Q ( q ) defined by generators: X ± ( i , k ) , t , K ± ( j , l ) , H ± ( j , l ) , t , C k ( ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r ) defining relations: C k : central elements , ( j , l ) K − ( j , l ) = K − H ± K + ( j , l ) K + ( j , l ) = 1 , ( i , k ) , 0 = 1 , ( i , k ) , K ε ′ ( i , k ) , H ε ′ ( i , k ) , t , H ε ′ [ K ε ( j , l ) ] = [ K ε ( j , l ) , s ] = [ H ε ( j , l ) , s ] = 0 ( ε, ε ′ ∈ { + , −} ) K ( j , l ) X ± ( i , k ) , t K − ( j , l ) = q ± a ( i , k )( j , l ) X ± ( i , k ) , t , ( j , l ) , s + 1 , X ± ( i , k ) , t ] = q ± a ( i , k )( j , l ) H + ( j , l ) , s X ± ( i , k ) , t + 1 − q ∓ a ( i , k )( j , l ) X ± [ H + ( i , k ) , t + 1 H + ( j , l ) , s [ H − ( j , l ) , s + 1 , X ± ( i , k ) , t ] = q ∓ a ( i , k )( j , l ) H − ( j , l ) , s X ± ( i , k ) , t + 1 − q ± a ( i , k )( j , l ) X ± ( i , k ) , t + 1 H − . ( j , l ) , s . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 10 / 25

  38. Algebra U . Definition . m = ( m 1 , . . . , m r ) ∈ Z r > 0 . U : associative algebra over Q ( q ) defined by generators: X ± ( i , k ) , t , K ± ( j , l ) , H ± ( j , l ) , t , C k ( ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r ) defining relations: C k : central elements , ( j , l ) K − ( j , l ) = K − H ± K + ( j , l ) K + ( j , l ) = 1 , ( i , k ) , 0 = 1 , ( i , k ) , K ε ′ ( i , k ) , H ε ′ ( i , k ) , t , H ε ′ [ K ε ( j , l ) ] = [ K ε ( j , l ) , s ] = [ H ε ( j , l ) , s ] = 0 ( ε, ε ′ ∈ { + , −} ) K ( j , l ) X ± ( i , k ) , t K − ( j , l ) = q ± a ( i , k )( j , l ) X ± ( i , k ) , t , ( j , l ) , s + 1 , X ± ( i , k ) , t ] = q ± a ( i , k )( j , l ) H + ( j , l ) , s X ± ( i , k ) , t + 1 − q ∓ a ( i , k )( j , l ) X ± [ H + ( i , k ) , t + 1 H + ( j , l ) , s [ H − ( j , l ) , s + 1 , X ± ( i , k ) , t ] = q ∓ a ( i , k )( j , l ) H − ( j , l ) , s X ± ( i , k ) , t + 1 − q ± a ( i , k )( j , l ) X ± ( i , k ) , t + 1 H − . ( j , l ) , s . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 10 / 25

  39. Algebra U . Definition . m = ( m 1 , . . . , m r ) ∈ Z r > 0 . U : associative algebra over Q ( q ) defined by generators: X ± ( i , k ) , t , K ± ( j , l ) , H ± ( j , l ) , t , C k ( ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r ) defining relations: C k : central elements , ( j , l ) K − ( j , l ) = K − H ± K + ( j , l ) K + ( j , l ) = 1 , ( i , k ) , 0 = 1 , ( i , k ) , K ε ′ ( i , k ) , H ε ′ ( i , k ) , t , H ε ′ [ K ε ( j , l ) ] = [ K ε ( j , l ) , s ] = [ H ε ( j , l ) , s ] = 0 ( ε, ε ′ ∈ { + , −} ) K ( j , l ) X ± ( i , k ) , t K − ( j , l ) = q ± a ( i , k )( j , l ) X ± ( i , k ) , t , ( j , l ) , s + 1 , X ± ( i , k ) , t ] = q ± a ( i , k )( j , l ) H + ( j , l ) , s X ± ( i , k ) , t + 1 − q ∓ a ( i , k )( j , l ) X ± [ H + ( i , k ) , t + 1 H + ( j , l ) , s [ H − ( j , l ) , s + 1 , X ± ( i , k ) , t ] = q ∓ a ( i , k )( j , l ) H − ( j , l ) , s X ± ( i , k ) , t + 1 − q ± a ( i , k )( j , l ) X ± ( i , k ) , t + 1 H − . ( j , l ) , s . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 10 / 25

  40. Algebra U . Definition . m = ( m 1 , . . . , m r ) ∈ Z r > 0 . U : associative algebra over Q ( q ) defined by generators: X ± ( i , k ) , t , K ± ( j , l ) , H ± ( j , l ) , t , C k ( ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r ) defining relations: C k : central elements , ( j , l ) K − ( j , l ) = K − H ± K + ( j , l ) K + ( j , l ) = 1 , ( i , k ) , 0 = 1 , ( i , k ) , K ε ′ ( i , k ) , H ε ′ ( i , k ) , t , H ε ′ [ K ε ( j , l ) ] = [ K ε ( j , l ) , s ] = [ H ε ( j , l ) , s ] = 0 ( ε, ε ′ ∈ { + , −} ) K ( j , l ) X ± ( i , k ) , t K − ( j , l ) = q ± a ( i , k )( j , l ) X ± ( i , k ) , t , ( j , l ) , s + 1 , X ± ( i , k ) , t ] = q ± a ( i , k )( j , l ) H + ( j , l ) , s X ± ( i , k ) , t + 1 − q ∓ a ( i , k )( j , l ) X ± [ H + ( i , k ) , t + 1 H + ( j , l ) , s [ H − ( j , l ) , s + 1 , X ± ( i , k ) , t ] = q ∓ a ( i , k )( j , l ) H − ( j , l ) , s X ± ( i , k ) , t + 1 − q ± a ( i , k )( j , l ) X ± ( i , k ) , t + 1 H − . ( j , l ) , s . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 10 / 25

  41. Algebra U . Definition . m = ( m 1 , . . . , m r ) ∈ Z r > 0 . U : associative algebra over Q ( q ) defined by generators: X ± ( i , k ) , t , K ± ( j , l ) , H ± ( j , l ) , t , C k ( ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r ) defining relations: C k : central elements , ( j , l ) K − ( j , l ) = K − H ± K + ( j , l ) K + ( j , l ) = 1 , ( i , k ) , 0 = 1 , ( i , k ) , K ε ′ ( i , k ) , H ε ′ ( i , k ) , t , H ε ′ [ K ε ( j , l ) ] = [ K ε ( j , l ) , s ] = [ H ε ( j , l ) , s ] = 0 ( ε, ε ′ ∈ { + , −} ) K ( j , l ) X ± ( i , k ) , t K − ( j , l ) = q ± a ( i , k )( j , l ) X ± ( i , k ) , t , ( j , l ) , s + 1 , X ± ( i , k ) , t ] = q ± a ( i , k )( j , l ) H + ( j , l ) , s X ± ( i , k ) , t + 1 − q ∓ a ( i , k )( j , l ) X ± [ H + ( i , k ) , t + 1 H + ( j , l ) , s [ H − ( j , l ) , s + 1 , X ± ( i , k ) , t ] = q ∓ a ( i , k )( j , l ) H − ( j , l ) , s X ± ( i , k ) , t + 1 − q ± a ( i , k )( j , l ) X ± ( i , k ) , t + 1 H − . ( j , l ) , s . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 10 / 25

  42. . defining relations (cont.): . X ε ( i , k ) , t X ε ( j , l ) , s − X ε ( j , l ) , s X ε if ( j , l ) � ( i , k ) , ( i ± 1 , k ) , ( i , k ) , t = 0 ( i , k ) , 0 ) 2 − ( q + q − 1 ) X ε X ε ( i ± 1 , k ) , 0 ( X ε ( i , k ) , 0 X ε ( i ± 1 , 0) , 0 X ε ( i , k ) , 0 + ( X ε ( i , k ) , 0 ) 2 X ε ( i ± 1 , k ) , 0 = 0 [ X + ( i , k ) , t , X − ( j , l ) , s ] J + ( i , k ) , s + t − J −  ( i , k ) , s + t   if i � m k ,   q − q − 1        = δ ( i , k )( j , l ) ( m k , k ) , s + t − J −  J + ( m k , k ) , s + t  + ( J + J −  − C k + 1 ( m k , k ) , s + t + 1 − )   ( m k , k ) , s + t + 1 q − q − 1       if i = m k ,   ( i , k ) K − ( i + 1 , k ) , J − ( i , k ) , 0 : = K − where J + ( i , k ) , 0 : = K + ( i , k ) K + ( i + 1 , k ) . t − 1 q − 1 ∑ ( ) J + ( i , k ) , t : = K + ( i , k ) K − q − t H + q t − 2 h H + ( i , k ) , h H − ( i , k ) , t − ( i + 1 , k ) ( i + 1 , k ) , t − h q − q − 1 h = 1 t − 1 q ∑ ( ) J − ( i , k ) K − − q t H − q t − 2 h H + ( i , k ) , h H − ( i , k ) , t : = K + ( i + 1 , k ) , t − ( i + 1 , k ) ( i + 1 , k ) , t − h q − q − 1 . h = 1 . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 11 / 25

  43. . defining relations (cont.): . X ε ( i , k ) , t X ε ( j , l ) , s − X ε ( j , l ) , s X ε if ( j , l ) � ( i , k ) , ( i ± 1 , k ) , ( i , k ) , t = 0 ( i , k ) , 0 ) 2 − ( q + q − 1 ) X ε X ε ( i ± 1 , k ) , 0 ( X ε ( i , k ) , 0 X ε ( i ± 1 , 0) , 0 X ε ( i , k ) , 0 + ( X ε ( i , k ) , 0 ) 2 X ε ( i ± 1 , k ) , 0 = 0 [ X + ( i , k ) , t , X − ( j , l ) , s ] J + ( i , k ) , s + t − J −  ( i , k ) , s + t   if i � m k ,   q − q − 1        = δ ( i , k )( j , l ) ( m k , k ) , s + t − J −  J + ( m k , k ) , s + t  + ( J + J −  − C k + 1 ( m k , k ) , s + t + 1 − )   ( m k , k ) , s + t + 1 q − q − 1       if i = m k ,   ( i , k ) K − ( i + 1 , k ) , J − ( i , k ) , 0 : = K − where J + ( i , k ) , 0 : = K + ( i , k ) K + ( i + 1 , k ) . t − 1 q − 1 ∑ ( ) J + ( i , k ) , t : = K + ( i , k ) K − q − t H + q t − 2 h H + ( i , k ) , h H − ( i , k ) , t − ( i + 1 , k ) ( i + 1 , k ) , t − h q − q − 1 h = 1 t − 1 q ∑ ( ) J − ( i , k ) K − − q t H − q t − 2 h H + ( i , k ) , h H − ( i , k ) , t : = K + ( i + 1 , k ) , t − ( i + 1 , k ) ( i + 1 , k ) , t − h q − q − 1 . h = 1 . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 11 / 25

  44. . Theorem (W) . Assume that m k ≥ n for all k = 1 , . . . , r − 1 . There exists a surjective homomorphism U ↠ S n , r s.t. C k �→ q c k , X ± ( i , k ) , t �→ X ± ( i , k ) , t , K ± ( j , l ) �→ K ± ( j , l ) , H ± ( j , l ) , t �→ H ± ( j , l ) , t . . . Proposition . . There exists a surjective homomorphism 1 U ↠ U q ( gl m ) s.t. C k �→ − 1 , X + ( i , k ) , 0 �→ e ( i , k ) , X − ( i , k ) , 0 �→ f ( i , k ) , K ± ( j , l ) �→ K ± ( j , l ) , X ± ( i , k ) , t , H ± ( j , l ) , t �→ 0 ( t ≥ 1) . . . There exists a injective homomorphism 2 U q ( g ) ֒ → U s.t. e ( i , k ) �→ X + ( i , k ) , 0 , f ( i , k ) �→ X − ( i , k ) , 0 , K ± ( j , l ) �→ K ± ( j , l ) . . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 12 / 25

  45. . Theorem (W) . Assume that m k ≥ n for all k = 1 , . . . , r − 1 . There exists a surjective homomorphism U ↠ S n , r s.t. C k �→ q c k , X ± ( i , k ) , t �→ X ± ( i , k ) , t , K ± ( j , l ) �→ K ± ( j , l ) , H ± ( j , l ) , t �→ H ± ( j , l ) , t . . . Proposition . . There exists a surjective homomorphism 1 U ↠ U q ( gl m ) s.t. C k �→ − 1 , X + ( i , k ) , 0 �→ e ( i , k ) , X − ( i , k ) , 0 �→ f ( i , k ) , K ± ( j , l ) �→ K ± ( j , l ) , X ± ( i , k ) , t , H ± ( j , l ) , t �→ 0 ( t ≥ 1) . . . There exists a injective homomorphism 2 U q ( g ) ֒ → U s.t. e ( i , k ) �→ X + ( i , k ) , 0 , f ( i , k ) �→ X − ( i , k ) , 0 , K ± ( j , l ) �→ K ± ( j , l ) . . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 12 / 25

  46. . Theorem (W) . Assume that m k ≥ n for all k = 1 , . . . , r − 1 . There exists a surjective homomorphism U ↠ S n , r s.t. C k �→ q c k , X ± ( i , k ) , t �→ X ± ( i , k ) , t , K ± ( j , l ) �→ K ± ( j , l ) , H ± ( j , l ) , t �→ H ± ( j , l ) , t . . . Proposition . . There exists a surjective homomorphism 1 U ↠ U q ( gl m ) s.t. C k �→ − 1 , X + ( i , k ) , 0 �→ e ( i , k ) , X − ( i , k ) , 0 �→ f ( i , k ) , K ± ( j , l ) �→ K ± ( j , l ) , X ± ( i , k ) , t , H ± ( j , l ) , t �→ 0 ( t ≥ 1) . . . There exists a injective homomorphism 2 U q ( g ) ֒ → U s.t. e ( i , k ) �→ X + ( i , k ) , 0 , f ( i , k ) �→ X − ( i , k ) , 0 , K ± ( j , l ) �→ K ± ( j , l ) . . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 12 / 25

  47. . Theorem (W) . Assume that m k ≥ n for all k = 1 , . . . , r − 1 . There exists a surjective homomorphism U ↠ S n , r s.t. C k �→ q c k , X ± ( i , k ) , t �→ X ± ( i , k ) , t , K ± ( j , l ) �→ K ± ( j , l ) , H ± ( j , l ) , t �→ H ± ( j , l ) , t . . . Proposition . . There exists a surjective homomorphism 1 U ↠ U q ( gl m ) s.t. C k �→ − 1 , X + ( i , k ) , 0 �→ e ( i , k ) , X − ( i , k ) , 0 �→ f ( i , k ) , K ± ( j , l ) �→ K ± ( j , l ) , X ± ( i , k ) , t , H ± ( j , l ) , t �→ 0 ( t ≥ 1) . . . There exists a injective homomorphism 2 U q ( g ) ֒ → U s.t. e ( i , k ) �→ X + ( i , k ) , 0 , f ( i , k ) �→ X − ( i , k ) , 0 , K ± ( j , l ) �→ K ± ( j , l ) . . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 12 / 25

  48. Highest weight modules of U Define subalgebras U 0 and U ± of U by U 0 : = ⟨ K ± � ( j , l ) , H ± � ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r ⟩ ( j , l ) , t , C k alg. . � U + : = ⟨ X + � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t U − : = ⟨ X − � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t . Lemma . ( U � U − ⊗ U 0 ⊗ U + ??? ) U = U − U 0 U + . For λ ∈ P ≥ 0 , φ = ( φ ± ( i , k ) , t ) ( i , k ) ∈ Γ ( m ) , t ≥ 1 ( φ ± ( i , k ) , t ∈ Q ( q )) and c = ( c 1 , . . . , c r ) ∈ Z r , U -module V is a highest weight module (of type 1) with h.w. ( λ, φ, c ) if ∃ v 0 ∈ V s.t. V = U · v 0 . X + ( i , k ) , t · v o = 0 for all ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 . ( i , k ) · v 0 = q λ ( i , k ) v 0 , H ± ( i , k ) , t · v 0 = φ ± K + ( i , k ) , t v 0 , C k · v 0 = q c k v 0 . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 13 / 25

  49. Highest weight modules of U Define subalgebras U 0 and U ± of U by U 0 : = ⟨ K ± � ( j , l ) , H ± � ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r ⟩ ( j , l ) , t , C k alg. . � U + : = ⟨ X + � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t U − : = ⟨ X − � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t . Lemma . ( U � U − ⊗ U 0 ⊗ U + ??? ) U = U − U 0 U + . For λ ∈ P ≥ 0 , φ = ( φ ± ( i , k ) , t ) ( i , k ) ∈ Γ ( m ) , t ≥ 1 ( φ ± ( i , k ) , t ∈ Q ( q )) and c = ( c 1 , . . . , c r ) ∈ Z r , U -module V is a highest weight module (of type 1) with h.w. ( λ, φ, c ) if ∃ v 0 ∈ V s.t. V = U · v 0 . X + ( i , k ) , t · v o = 0 for all ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 . ( i , k ) · v 0 = q λ ( i , k ) v 0 , H ± ( i , k ) , t · v 0 = φ ± K + ( i , k ) , t v 0 , C k · v 0 = q c k v 0 . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 13 / 25

  50. Highest weight modules of U Define subalgebras U 0 and U ± of U by U 0 : = ⟨ K ± � ( j , l ) , H ± � ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r ⟩ ( j , l ) , t , C k alg. . � U + : = ⟨ X + � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t U − : = ⟨ X − � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t . Lemma . ( U � U − ⊗ U 0 ⊗ U + ??? ) U = U − U 0 U + . For λ ∈ P ≥ 0 , φ = ( φ ± ( i , k ) , t ) ( i , k ) ∈ Γ ( m ) , t ≥ 1 ( φ ± ( i , k ) , t ∈ Q ( q )) and c = ( c 1 , . . . , c r ) ∈ Z r , U -module V is a highest weight module (of type 1) with h.w. ( λ, φ, c ) if ∃ v 0 ∈ V s.t. V = U · v 0 . X + ( i , k ) , t · v o = 0 for all ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 . ( i , k ) · v 0 = q λ ( i , k ) v 0 , H ± ( i , k ) , t · v 0 = φ ± K + ( i , k ) , t v 0 , C k · v 0 = q c k v 0 . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 13 / 25

  51. Highest weight modules of U Define subalgebras U 0 and U ± of U by U 0 : = ⟨ K ± � ( j , l ) , H ± � ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r ⟩ ( j , l ) , t , C k alg. . � U + : = ⟨ X + � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t U − : = ⟨ X − � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t . Lemma . ( U � U − ⊗ U 0 ⊗ U + ??? ) U = U − U 0 U + . For λ ∈ P ≥ 0 , φ = ( φ ± ( i , k ) , t ) ( i , k ) ∈ Γ ( m ) , t ≥ 1 ( φ ± ( i , k ) , t ∈ Q ( q )) and c = ( c 1 , . . . , c r ) ∈ Z r , U -module V is a highest weight module (of type 1) with h.w. ( λ, φ, c ) if ∃ v 0 ∈ V s.t. V = U · v 0 . X + ( i , k ) , t · v o = 0 for all ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 . ( i , k ) · v 0 = q λ ( i , k ) v 0 , H ± ( i , k ) , t · v 0 = φ ± K + ( i , k ) , t v 0 , C k · v 0 = q c k v 0 . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 13 / 25

  52. Highest weight modules of U Define subalgebras U 0 and U ± of U by U 0 : = ⟨ K ± � ( j , l ) , H ± � ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r ⟩ ( j , l ) , t , C k alg. . � U + : = ⟨ X + � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t U − : = ⟨ X − � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t . Lemma . ( U � U − ⊗ U 0 ⊗ U + ??? ) U = U − U 0 U + . For λ ∈ P ≥ 0 , φ = ( φ ± ( i , k ) , t ) ( i , k ) ∈ Γ ( m ) , t ≥ 1 ( φ ± ( i , k ) , t ∈ Q ( q )) and c = ( c 1 , . . . , c r ) ∈ Z r , U -module V is a highest weight module (of type 1) with h.w. ( λ, φ, c ) if ∃ v 0 ∈ V s.t. V = U · v 0 . X + ( i , k ) , t · v o = 0 for all ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 . ( i , k ) · v 0 = q λ ( i , k ) v 0 , H ± ( i , k ) , t · v 0 = φ ± K + ( i , k ) , t v 0 , C k · v 0 = q c k v 0 . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 13 / 25

  53. Highest weight modules of U Define subalgebras U 0 and U ± of U by U 0 : = ⟨ K ± � ( j , l ) , H ± � ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r ⟩ ( j , l ) , t , C k alg. . � U + : = ⟨ X + � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t U − : = ⟨ X − � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t . Lemma . ( U � U − ⊗ U 0 ⊗ U + ??? ) U = U − U 0 U + . For λ ∈ P ≥ 0 , φ = ( φ ± ( i , k ) , t ) ( i , k ) ∈ Γ ( m ) , t ≥ 1 ( φ ± ( i , k ) , t ∈ Q ( q )) and c = ( c 1 , . . . , c r ) ∈ Z r , U -module V is a highest weight module (of type 1) with h.w. ( λ, φ, c ) if ∃ v 0 ∈ V s.t. V = U · v 0 . X + ( i , k ) , t · v o = 0 for all ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 . ( i , k ) · v 0 = q λ ( i , k ) v 0 , H ± ( i , k ) , t · v 0 = φ ± K + ( i , k ) , t v 0 , C k · v 0 = q c k v 0 . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 13 / 25

  54. Highest weight modules of U Define subalgebras U 0 and U ± of U by U 0 : = ⟨ K ± � ( j , l ) , H ± � ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r ⟩ ( j , l ) , t , C k alg. . � U + : = ⟨ X + � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t U − : = ⟨ X − � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t . Lemma . ( U � U − ⊗ U 0 ⊗ U + ??? ) U = U − U 0 U + . For λ ∈ P ≥ 0 , φ = ( φ ± ( i , k ) , t ) ( i , k ) ∈ Γ ( m ) , t ≥ 1 ( φ ± ( i , k ) , t ∈ Q ( q )) and c = ( c 1 , . . . , c r ) ∈ Z r , U -module V is a highest weight module (of type 1) with h.w. ( λ, φ, c ) if ∃ v 0 ∈ V s.t. V = U · v 0 . X + ( i , k ) , t · v o = 0 for all ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 . ( i , k ) · v 0 = q λ ( i , k ) v 0 , H ± ( i , k ) , t · v 0 = φ ± K + ( i , k ) , t v 0 , C k · v 0 = q c k v 0 . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 13 / 25

  55. Highest weight modules of U Define subalgebras U 0 and U ± of U by U 0 : = ⟨ K ± � ( j , l ) , H ± � ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r ⟩ ( j , l ) , t , C k alg. . � U + : = ⟨ X + � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t U − : = ⟨ X − � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t . Lemma . ( U � U − ⊗ U 0 ⊗ U + ??? ) U = U − U 0 U + . For λ ∈ P ≥ 0 , φ = ( φ ± ( i , k ) , t ) ( i , k ) ∈ Γ ( m ) , t ≥ 1 ( φ ± ( i , k ) , t ∈ Q ( q )) and c = ( c 1 , . . . , c r ) ∈ Z r , U -module V is a highest weight module (of type 1) with h.w. ( λ, φ, c ) if ∃ v 0 ∈ V s.t. V = U · v 0 . X + ( i , k ) , t · v o = 0 for all ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 . ( i , k ) · v 0 = q λ ( i , k ) v 0 , H ± ( i , k ) , t · v 0 = φ ± K + ( i , k ) , t v 0 , C k · v 0 = q c k v 0 . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 13 / 25

  56. Highest weight modules of U Define subalgebras U 0 and U ± of U by U 0 : = ⟨ K ± � ( j , l ) , H ± � ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r ⟩ ( j , l ) , t , C k alg. . � U + : = ⟨ X + � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t U − : = ⟨ X − � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t . Lemma . ( U � U − ⊗ U 0 ⊗ U + ??? ) U = U − U 0 U + . For λ ∈ P ≥ 0 , φ = ( φ ± ( i , k ) , t ) ( i , k ) ∈ Γ ( m ) , t ≥ 1 ( φ ± ( i , k ) , t ∈ Q ( q )) and c = ( c 1 , . . . , c r ) ∈ Z r , U -module V is a highest weight module (of type 1) with h.w. ( λ, φ, c ) if ∃ v 0 ∈ V s.t. V = U · v 0 . X + ( i , k ) , t · v o = 0 for all ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 . ( i , k ) · v 0 = q λ ( i , k ) v 0 , H ± ( i , k ) , t · v 0 = φ ± K + ( i , k ) , t v 0 , C k · v 0 = q c k v 0 . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 13 / 25

  57. Highest weight modules of U Define subalgebras U 0 and U ± of U by U 0 : = ⟨ K ± � ( j , l ) , H ± � ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r ⟩ ( j , l ) , t , C k alg. . � U + : = ⟨ X + � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t U − : = ⟨ X − � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t . Lemma . ( U � U − ⊗ U 0 ⊗ U + ??? ) U = U − U 0 U + . For λ ∈ P ≥ 0 , φ = ( φ ± ( i , k ) , t ) ( i , k ) ∈ Γ ( m ) , t ≥ 1 ( φ ± ( i , k ) , t ∈ Q ( q )) and c = ( c 1 , . . . , c r ) ∈ Z r , U -module V is a highest weight module (of type 1) with h.w. ( λ, φ, c ) if ∃ v 0 ∈ V s.t. V = U · v 0 . X + ( i , k ) , t · v o = 0 for all ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 . ( i , k ) · v 0 = q λ ( i , k ) v 0 , H ± ( i , k ) , t · v 0 = φ ± K + ( i , k ) , t v 0 , C k · v 0 = q c k v 0 . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 13 / 25

  58. Highest weight modules of U Define subalgebras U 0 and U ± of U by U 0 : = ⟨ K ± � ( j , l ) , H ± � ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r ⟩ ( j , l ) , t , C k alg. . � U + : = ⟨ X + � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t U − : = ⟨ X − � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t . Lemma . ( U � U − ⊗ U 0 ⊗ U + ??? ) U = U − U 0 U + . For λ ∈ P ≥ 0 , φ = ( φ ± ( i , k ) , t ) ( i , k ) ∈ Γ ( m ) , t ≥ 1 ( φ ± ( i , k ) , t ∈ Q ( q )) and c = ( c 1 , . . . , c r ) ∈ Z r , U -module V is a highest weight module (of type 1) with h.w. ( λ, φ, c ) if ∃ v 0 ∈ V s.t. V = U · v 0 . X + ( i , k ) , t · v o = 0 for all ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 . ( i , k ) · v 0 = q λ ( i , k ) v 0 , H ± ( i , k ) , t · v 0 = φ ± K + ( i , k ) , t v 0 , C k · v 0 = q c k v 0 . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 13 / 25

  59. Highest weight modules of U Define subalgebras U 0 and U ± of U by U 0 : = ⟨ K ± � ( j , l ) , H ± � ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r ⟩ ( j , l ) , t , C k alg. . � U + : = ⟨ X + � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t U − : = ⟨ X − � � ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 ⟩ alg. . � ( i , k ) , t . Lemma . ( U � U − ⊗ U 0 ⊗ U + ??? ) U = U − U 0 U + . For λ ∈ P ≥ 0 , φ = ( φ ± ( i , k ) , t ) ( i , k ) ∈ Γ ( m ) , t ≥ 1 ( φ ± ( i , k ) , t ∈ Q ( q )) and c = ( c 1 , . . . , c r ) ∈ Z r , U -module V is a highest weight module (of type 1) with h.w. ( λ, φ, c ) if ∃ v 0 ∈ V s.t. V = U · v 0 . X + ( i , k ) , t · v o = 0 for all ( i , k ) ∈ Γ ′ ( m ) , t ≥ 0 . ( i , k ) · v 0 = q λ ( i , k ) v 0 , H ± ( i , k ) , t · v 0 = φ ± K + ( i , k ) , t v 0 , C k · v 0 = q c k v 0 . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 13 / 25

  60. Highest weight modules of U For ( λ, φ, c ) , define the Verma module V ( λ, φ, c ) in usual way. h.w. module with h.w. ( λ, φ, c ) is a quotient of V ( λ, φ, c ) . V ( λ, φ, c ) has the unique simple top L ( λ, φ, c ) . . Problem . When is L ( λ, φ, c ) finite dimensional?. . . Lemma . L ( λ, φ, c ) : finite dim. � λ : r -partition. i.e. λ (1 , k ) ≥ λ (2 , k ) ≥ · · · ≥ λ ( m k , k ) ≥ 0 for k = 1 , . . . , r . . ∵ ) Recall U q ( g ) ֒ → U . v 0 : h.w. vector of L ( λ, φ, c ) � v 0 : h.w. vector with weight λ as U q ( g ) -module . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 14 / 25

  61. Highest weight modules of U For ( λ, φ, c ) , define the Verma module V ( λ, φ, c ) in usual way. h.w. module with h.w. ( λ, φ, c ) is a quotient of V ( λ, φ, c ) . V ( λ, φ, c ) has the unique simple top L ( λ, φ, c ) . . Problem . When is L ( λ, φ, c ) finite dimensional?. . . Lemma . L ( λ, φ, c ) : finite dim. � λ : r -partition. i.e. λ (1 , k ) ≥ λ (2 , k ) ≥ · · · ≥ λ ( m k , k ) ≥ 0 for k = 1 , . . . , r . . ∵ ) Recall U q ( g ) ֒ → U . v 0 : h.w. vector of L ( λ, φ, c ) � v 0 : h.w. vector with weight λ as U q ( g ) -module . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 14 / 25

  62. Highest weight modules of U For ( λ, φ, c ) , define the Verma module V ( λ, φ, c ) in usual way. h.w. module with h.w. ( λ, φ, c ) is a quotient of V ( λ, φ, c ) . V ( λ, φ, c ) has the unique simple top L ( λ, φ, c ) . . Problem . When is L ( λ, φ, c ) finite dimensional?. . . Lemma . L ( λ, φ, c ) : finite dim. � λ : r -partition. i.e. λ (1 , k ) ≥ λ (2 , k ) ≥ · · · ≥ λ ( m k , k ) ≥ 0 for k = 1 , . . . , r . . ∵ ) Recall U q ( g ) ֒ → U . v 0 : h.w. vector of L ( λ, φ, c ) � v 0 : h.w. vector with weight λ as U q ( g ) -module . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 14 / 25

  63. Highest weight modules of U For ( λ, φ, c ) , define the Verma module V ( λ, φ, c ) in usual way. h.w. module with h.w. ( λ, φ, c ) is a quotient of V ( λ, φ, c ) . V ( λ, φ, c ) has the unique simple top L ( λ, φ, c ) . . Problem . When is L ( λ, φ, c ) finite dimensional?. . . Lemma . L ( λ, φ, c ) : finite dim. � λ : r -partition. i.e. λ (1 , k ) ≥ λ (2 , k ) ≥ · · · ≥ λ ( m k , k ) ≥ 0 for k = 1 , . . . , r . . ∵ ) Recall U q ( g ) ֒ → U . v 0 : h.w. vector of L ( λ, φ, c ) � v 0 : h.w. vector with weight λ as U q ( g ) -module . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 14 / 25

  64. Highest weight modules of U For ( λ, φ, c ) , define the Verma module V ( λ, φ, c ) in usual way. h.w. module with h.w. ( λ, φ, c ) is a quotient of V ( λ, φ, c ) . V ( λ, φ, c ) has the unique simple top L ( λ, φ, c ) . . Problem . When is L ( λ, φ, c ) finite dimensional?. . . Lemma . L ( λ, φ, c ) : finite dim. � λ : r -partition. i.e. λ (1 , k ) ≥ λ (2 , k ) ≥ · · · ≥ λ ( m k , k ) ≥ 0 for k = 1 , . . . , r . . ∵ ) Recall U q ( g ) ֒ → U . v 0 : h.w. vector of L ( λ, φ, c ) � v 0 : h.w. vector with weight λ as U q ( g ) -module . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 14 / 25

  65. Highest weight modules of U For ( λ, φ, c ) , define the Verma module V ( λ, φ, c ) in usual way. h.w. module with h.w. ( λ, φ, c ) is a quotient of V ( λ, φ, c ) . V ( λ, φ, c ) has the unique simple top L ( λ, φ, c ) . . Problem . When is L ( λ, φ, c ) finite dimensional?. . . Lemma . L ( λ, φ, c ) : finite dim. � λ : r -partition. i.e. λ (1 , k ) ≥ λ (2 , k ) ≥ · · · ≥ λ ( m k , k ) ≥ 0 for k = 1 , . . . , r . . ∵ ) Recall U q ( g ) ֒ → U . v 0 : h.w. vector of L ( λ, φ, c ) � v 0 : h.w. vector with weight λ as U q ( g ) -module . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 14 / 25

  66. Highest weight modules of U For ( λ, φ, c ) , define the Verma module V ( λ, φ, c ) in usual way. h.w. module with h.w. ( λ, φ, c ) is a quotient of V ( λ, φ, c ) . V ( λ, φ, c ) has the unique simple top L ( λ, φ, c ) . . Problem . When is L ( λ, φ, c ) finite dimensional?. . . Lemma . L ( λ, φ, c ) : finite dim. � λ : r -partition. i.e. λ (1 , k ) ≥ λ (2 , k ) ≥ · · · ≥ λ ( m k , k ) ≥ 0 for k = 1 , . . . , r . . ∵ ) Recall U q ( g ) ֒ → U . v 0 : h.w. vector of L ( λ, φ, c ) � v 0 : h.w. vector with weight λ as U q ( g ) -module . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 14 / 25

  67. Category O c For c = ( c 1 , . . . , c r ) ∈ Z r , let O c be the category of finite dim. U -modules s.t. C k ( 1 ≤ k ≤ r ) acts on M ∈ O c as the multiplication by q c k . M ∈ O c has the weight space decom.: ⊕ � � K ( j , l ) · m = q λ ( j , l ) m } . M = M λ , where M λ = { m ∈ M � λ ∈ P ≥ 0 All eigenvalues of H ± ( i , k ) , t ( ( i , k ) ∈ Γ ( m ) , t ≥ 0 ) are elements of Z [ q , q − 1 , ( q − q − 1 ) − 1 ] . . Proposition . . simple object of O c is a h.w. module. 1 . . If m k ≥ n for all k = 1 , . . . , r − 1 , 2 S n , r -mod ⊂ O c . . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 15 / 25

  68. Category O c For c = ( c 1 , . . . , c r ) ∈ Z r , let O c be the category of finite dim. U -modules s.t. C k ( 1 ≤ k ≤ r ) acts on M ∈ O c as the multiplication by q c k . M ∈ O c has the weight space decom.: ⊕ � � K ( j , l ) · m = q λ ( j , l ) m } . M = M λ , where M λ = { m ∈ M � λ ∈ P ≥ 0 All eigenvalues of H ± ( i , k ) , t ( ( i , k ) ∈ Γ ( m ) , t ≥ 0 ) are elements of Z [ q , q − 1 , ( q − q − 1 ) − 1 ] . . Proposition . . simple object of O c is a h.w. module. 1 . . If m k ≥ n for all k = 1 , . . . , r − 1 , 2 S n , r -mod ⊂ O c . . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 15 / 25

  69. Category O c For c = ( c 1 , . . . , c r ) ∈ Z r , let O c be the category of finite dim. U -modules s.t. C k ( 1 ≤ k ≤ r ) acts on M ∈ O c as the multiplication by q c k . M ∈ O c has the weight space decom.: ⊕ � � K ( j , l ) · m = q λ ( j , l ) m } . M = M λ , where M λ = { m ∈ M � λ ∈ P ≥ 0 All eigenvalues of H ± ( i , k ) , t ( ( i , k ) ∈ Γ ( m ) , t ≥ 0 ) are elements of Z [ q , q − 1 , ( q − q − 1 ) − 1 ] . . Proposition . . simple object of O c is a h.w. module. 1 . . If m k ≥ n for all k = 1 , . . . , r − 1 , 2 S n , r -mod ⊂ O c . . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 15 / 25

  70. Category O c For c = ( c 1 , . . . , c r ) ∈ Z r , let O c be the category of finite dim. U -modules s.t. C k ( 1 ≤ k ≤ r ) acts on M ∈ O c as the multiplication by q c k . M ∈ O c has the weight space decom.: ⊕ � � K ( j , l ) · m = q λ ( j , l ) m } . M = M λ , where M λ = { m ∈ M � λ ∈ P ≥ 0 All eigenvalues of H ± ( i , k ) , t ( ( i , k ) ∈ Γ ( m ) , t ≥ 0 ) are elements of Z [ q , q − 1 , ( q − q − 1 ) − 1 ] . . Proposition . . simple object of O c is a h.w. module. 1 . . If m k ≥ n for all k = 1 , . . . , r − 1 , 2 S n , r -mod ⊂ O c . . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 15 / 25

  71. Category O c For c = ( c 1 , . . . , c r ) ∈ Z r , let O c be the category of finite dim. U -modules s.t. C k ( 1 ≤ k ≤ r ) acts on M ∈ O c as the multiplication by q c k . M ∈ O c has the weight space decom.: ⊕ � � K ( j , l ) · m = q λ ( j , l ) m } . M = M λ , where M λ = { m ∈ M � λ ∈ P ≥ 0 All eigenvalues of H ± ( i , k ) , t ( ( i , k ) ∈ Γ ( m ) , t ≥ 0 ) are elements of Z [ q , q − 1 , ( q − q − 1 ) − 1 ] . . Proposition . . simple object of O c is a h.w. module. 1 . . If m k ≥ n for all k = 1 , . . . , r − 1 , 2 S n , r -mod ⊂ O c . . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 15 / 25

  72. Category O c For c = ( c 1 , . . . , c r ) ∈ Z r , let O c be the category of finite dim. U -modules s.t. C k ( 1 ≤ k ≤ r ) acts on M ∈ O c as the multiplication by q c k . M ∈ O c has the weight space decom.: ⊕ � � K ( j , l ) · m = q λ ( j , l ) m } . M = M λ , where M λ = { m ∈ M � λ ∈ P ≥ 0 All eigenvalues of H ± ( i , k ) , t ( ( i , k ) ∈ Γ ( m ) , t ≥ 0 ) are elements of Z [ q , q − 1 , ( q − q − 1 ) − 1 ] . . Proposition . . simple object of O c is a h.w. module. 1 . . If m k ≥ n for all k = 1 , . . . , r − 1 , 2 S n , r -mod ⊂ O c . . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 15 / 25

  73. Example ⊕ V : = ( i , k ) ∈ Γ ( m ) Q ( q ) v ( i , k ) with the following action:  qv ( i , k ) if ( j , l ) = ( i , k ) ,   K + ( j , l ) · v ( i , k ) =   othewise. 0    q tc 1 if ( j , l ) = ( i , k ) ,  H ±  ( j , l ) . t · v ( i , k ) =   0 otherwise.   q tc 1   ( q − q − 1 ) t v ( i + 1 , k ) if ( j , l ) = ( i , k )    X − ( j , l ) , t · v ( i , k ) =     0 otherwise   X + ( j , l ) , t · v ( i , k ) q tc 1  ( q − q − 1 ) t v ( i − 1 , k ) if i � 1 and ( j , l ) = ( i − 1 , k )        q tc 1  =  ( q c 1 − q c k ) v ( m k − 1 , k − 1) if i = 1 and ( j , l ) = ( m k − 1 , k − 1)   ( q − q − 1 ) t       0 otherwise  . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 16 / 25

  74. Example ⊕ V : = ( i , k ) ∈ Γ ( m ) Q ( q ) v ( i , k ) with the following action:  qv ( i , k ) if ( j , l ) = ( i , k ) ,   K + ( j , l ) · v ( i , k ) =   othewise. 0    q tc 1 if ( j , l ) = ( i , k ) ,  H ±  ( j , l ) . t · v ( i , k ) =   0 otherwise.   q tc 1   ( q − q − 1 ) t v ( i + 1 , k ) if ( j , l ) = ( i , k )    X − ( j , l ) , t · v ( i , k ) =     0 otherwise   X + ( j , l ) , t · v ( i , k ) q tc 1  ( q − q − 1 ) t v ( i − 1 , k ) if i � 1 and ( j , l ) = ( i − 1 , k )        q tc 1  =  ( q c 1 − q c k ) v ( m k − 1 , k − 1) if i = 1 and ( j , l ) = ( m k − 1 , k − 1)   ( q − q − 1 ) t       0 otherwise  . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 16 / 25

  75. Example ⊕ V : = ( i , k ) ∈ Γ ( m ) Q ( q ) v ( i , k ) with the following action:  qv ( i , k ) if ( j , l ) = ( i , k ) ,   K + ( j , l ) · v ( i , k ) =   othewise. 0    q tc 1 if ( j , l ) = ( i , k ) ,  H ±  ( j , l ) . t · v ( i , k ) =   0 otherwise.   q tc 1   ( q − q − 1 ) t v ( i + 1 , k ) if ( j , l ) = ( i , k )    X − ( j , l ) , t · v ( i , k ) =     0 otherwise   X + ( j , l ) , t · v ( i , k ) q tc 1  ( q − q − 1 ) t v ( i − 1 , k ) if i � 1 and ( j , l ) = ( i − 1 , k )        q tc 1  =  ( q c 1 − q c k ) v ( m k − 1 , k − 1) if i = 1 and ( j , l ) = ( m k − 1 , k − 1)   ( q − q − 1 ) t       0 otherwise  . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 16 / 25

  76. Example ⊕ V : = ( i , k ) ∈ Γ ( m ) Q ( q ) v ( i , k ) with the following action:  qv ( i , k ) if ( j , l ) = ( i , k ) ,   K + ( j , l ) · v ( i , k ) =   othewise. 0    q tc 1 if ( j , l ) = ( i , k ) ,  H ±  ( j , l ) . t · v ( i , k ) =   0 otherwise.   q tc 1   ( q − q − 1 ) t v ( i + 1 , k ) if ( j , l ) = ( i , k )    X − ( j , l ) , t · v ( i , k ) =     0 otherwise   X + ( j , l ) , t · v ( i , k ) q tc 1  ( q − q − 1 ) t v ( i − 1 , k ) if i � 1 and ( j , l ) = ( i − 1 , k )        q tc 1  =  ( q c 1 − q c k ) v ( m k − 1 , k − 1) if i = 1 and ( j , l ) = ( m k − 1 , k − 1)   ( q − q − 1 ) t       0 otherwise  . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 16 / 25

  77. Example ⊕ V : = ( i , k ) ∈ Γ ( m ) Q ( q ) v ( i , k ) with the following action:  qv ( i , k ) if ( j , l ) = ( i , k ) ,   K + ( j , l ) · v ( i , k ) =   othewise. 0    q tc 1 if ( j , l ) = ( i , k ) ,  H ±  ( j , l ) . t · v ( i , k ) =   0 otherwise.   q tc 1   ( q − q − 1 ) t v ( i + 1 , k ) if ( j , l ) = ( i , k )    X − ( j , l ) , t · v ( i , k ) =     0 otherwise   X + ( j , l ) , t · v ( i , k ) q tc 1  ( q − q − 1 ) t v ( i − 1 , k ) if i � 1 and ( j , l ) = ( i − 1 , k )        q tc 1  =  ( q c 1 − q c k ) v ( m k − 1 , k − 1) if i = 1 and ( j , l ) = ( m k − 1 , k − 1)   ( q − q − 1 ) t       0 otherwise  . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 16 / 25

  78. U -module V : Q ( q ) v (1 , 1) Q ( q ) v (1 , 2) Q ( q ) v (1 , k ) Q ( q ) v (1 , r ) ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ X − X + X − X + X − X + X − X + (1 , 1) , t (1 , 1) , t (1 , 2) , t (1 , 2) , t (1 , k ) , t (1 , k ) , t (1 , r ) , t (1 , r ) , t Q ( q ) v (2 , 1) Q ( q ) v (2 , 2) Q ( q ) v (2 , k ) Q ( q ) v (2 , r ) . . . . . . . . . . . . Q ( q ) v ( i − 1 , 1) Q ( q ) v ( i − 1 , 2) Q ( q ) v ( i − 1 , k ) Q ( q ) v ( i − 1 , r ) ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ X − X + X − X + X − X + X − X + ( i − 1 , 1) , t ( i − 1 , 1) , t ( i − 1 , 2) , t ( i − 1 , 2) , t ( i − 1 , k ) , t ( i − 1 , k ) , t ( i − 1 , r ) , t ( i − 1 , r ) , t Q ( q ) v ( i , 1) Q ( q ) v ( i , 2) Q ( q ) v ( i , k ) Q ( q ) v ( i , r ) · · · · · · ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ X − X − X − X − X + X + X + X + ( i , 1) , t ( i , 1) , t ( i , 2) , t ( i , 2) , t ( i , k ) , t ( i , k ) , t ( i , r ) , t ( i , r ) , t Q ( q ) v ( i + 1 , 1) Q ( q ) v ( i + 1 , 2) Q ( q ) v ( i + 1 , k ) Q ( q ) v ( i + 1 , r ) ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ X − X − X − X − X + X + X + X + ( i + 1 , 1) , t . ( i + 1 , 1) , t ( i + 1 , 2) , t . ( i + 1 , 2) , t ( i + 1 , k ) , t . ( i + 1 , k ) , t ( i + 1 , r ) , t . ( i + 1 , r ) , t . . . . . . . . Q ( q ) v ( m 1 − 1 , 1) Q ( q ) v ( m 2 − 1 , 2) Q ( q ) v ( m k − 1 , k ) Q ( q ) v ( m r − 1 , r ) ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ X − X + X − X + X − X + X − X + ( m 1 − 1 , 1) , t ( m 1 − 1 , 1) , t ( m 2 − 1 , 2) , t ( m 2 − 1 , 2) , t ( m k − 1 , k ) , t ( m k − 1 , k ) , t ( m r − 1 , r ) , t ( m r − 1 , r ) , Q ( q ) v ( m 1 , 1) Q ( q ) v ( m 2 , 2) Q ( q ) v ( m k , k ) Q ( q ) v ( m r , r ) ↓ ↑ ↓ ↑ ↓ ↑ X − X + X − X + X − X + ( m 1 , 1) , t ( m 1 , 1) , t ( m 2 , 2) , t ( m 2 , 2) , t ( m k , k ) , t ( m k , k ) , t . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 17 / 25

  79. Res U U q ( g ) V (red : omit, only t = 0 ) : Q ( q ) v (1 , 1) Q ( q ) v (1 , 2) Q ( q ) v (1 , k ) Q ( q ) v (1 , r ) ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ X − X + X − X + X − X + X − X + (1 , 1) , t (1 , 1) , t (1 , 2) , t (1 , 2) , t (1 , k ) , t (1 , k ) , t (1 , r ) , t (1 , r ) , t Q ( q ) v (2 , 1) Q ( q ) v (2 , 2) Q ( q ) v (2 , k ) Q ( q ) v (2 , r ) . . . . . . . . . . . . Q ( q ) v ( i − 1 , 1) Q ( q ) v ( i − 1 , 2) Q ( q ) v ( i − 1 , k ) Q ( q ) v ( i − 1 , r ) ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ X − X + X − X + X − X + X − X + ( i − 1 , 1) , t ( i − 1 , 1) , t ( i − 1 , 2) , t ( i − 1 , 2) , t ( i − 1 , k ) , t ( i − 1 , k ) , t ( i − 1 , r ) , t ( i − 1 , r ) , t Q ( q ) v ( i , 1) Q ( q ) v ( i , 2) Q ( q ) v ( i , k ) Q ( q ) v ( i , r ) · · · · · · ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ X − X + X − X + X − X + X − X + ( i , 1) , t ( i , 1) , t ( i , 2) , t ( i , 2) , t ( i , r ) , t ( i , r ) , t ( i , k ) , t ( i , k ) , t Q ( q ) v ( i + 1 , 1) Q ( q ) v ( i + 1 , 2) Q ( q ) v ( i + 1 , k ) Q ( q ) v ( i + 1 , r ) ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ X − X + X − X + X − X + X − X + ( i + 1 , 1) , t . ( i + 1 , 1) , t ( i + 1 , 2) , t . ( i + 1 , 2) , t ( i + 1 , k ) , t . ( i + 1 , k ) , t ( i + 1 , r ) , t . ( i + 1 , r ) , t . . . . . . . . Q ( q ) v ( m 1 − 1 , 1) Q ( q ) v ( m 2 − 1 , 2) Q ( q ) v ( m k − 1 , k ) Q ( q ) v ( m r − 1 , r ) ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ X − X − X − X − X + X + X + X + ( m 1 − 1 , 1) , t ( m 1 − 1 , 1) , t ( m 2 − 1 , 2) , t ( m 2 − 1 , 2) , t ( m k − 1 , k ) , t ( m k − 1 , k ) , t ( m r − 1 , r ) , t ( m r − 1 , r ) , Q ( q ) v ( m 1 , 1) Q ( q ) v ( m 2 , 2) Q ( q ) v ( m k , k ) Q ( q ) v ( m r , r ) ↓ ↑ ↓ ↑ ↓ ↑ X − X − X − X + X + X + ( m 1 , 1) , t ( m 1 , 1) , t ( m 2 , 2) , t ( m 2 , 2) , t ( m k , k ) , t ( m k , k ) , t . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 17 / 25

  80. Weyl modules and simple modules of S n , r Assume that m k ≥ n for all k = 1 , . . . , r − 1 . Then we have U ↠ S n , r . S n , r : quasi-hereditary algebra. � Λ + n , r ( m ) : = { λ ∈ Λ n , r ( m ) � λ (1 , k ) ≥ λ (2 , k ) ≥ · · · ≥ λ ( m k , k ) for all k = 1 , . . . , r } � n , r ( m ) } : a set of standard (Weyl) modules of S n , r . � � λ ∈ Λ + { W ( λ ) � n , r ( m ) } = { simple S n , r -modules } / iso. . � � λ ∈ Λ + { L ( λ ) : = Top W ( λ ) � . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 18 / 25

  81. Weyl modules and simple modules of S n , r Assume that m k ≥ n for all k = 1 , . . . , r − 1 . Then we have U ↠ S n , r . S n , r : quasi-hereditary algebra. � Λ + n , r ( m ) : = { λ ∈ Λ n , r ( m ) � λ (1 , k ) ≥ λ (2 , k ) ≥ · · · ≥ λ ( m k , k ) for all k = 1 , . . . , r } � n , r ( m ) } : a set of standard (Weyl) modules of S n , r . � � λ ∈ Λ + { W ( λ ) � n , r ( m ) } = { simple S n , r -modules } / iso. . � � λ ∈ Λ + { L ( λ ) : = Top W ( λ ) � . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 18 / 25

  82. Weyl modules and simple modules of S n , r Assume that m k ≥ n for all k = 1 , . . . , r − 1 . Then we have U ↠ S n , r . S n , r : quasi-hereditary algebra. � Λ + n , r ( m ) : = { λ ∈ Λ n , r ( m ) � λ (1 , k ) ≥ λ (2 , k ) ≥ · · · ≥ λ ( m k , k ) for all k = 1 , . . . , r } � n , r ( m ) } : a set of standard (Weyl) modules of S n , r . � � λ ∈ Λ + { W ( λ ) � n , r ( m ) } = { simple S n , r -modules } / iso. . � � λ ∈ Λ + { L ( λ ) : = Top W ( λ ) � . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 18 / 25

  83. Weyl modules and simple modules of S n , r Assume that m k ≥ n for all k = 1 , . . . , r − 1 . Then we have U ↠ S n , r . S n , r : quasi-hereditary algebra. � Λ + n , r ( m ) : = { λ ∈ Λ n , r ( m ) � λ (1 , k ) ≥ λ (2 , k ) ≥ · · · ≥ λ ( m k , k ) for all k = 1 , . . . , r } � n , r ( m ) } : a set of standard (Weyl) modules of S n , r . � � λ ∈ Λ + { W ( λ ) � n , r ( m ) } = { simple S n , r -modules } / iso. . � � λ ∈ Λ + { L ( λ ) : = Top W ( λ ) � . Theorem (W) . Under U q ( g ) ֒ → U , ) ⊕ β λµ as U q ( g ) -modules , ⊕ ( W ( µ [1] ) ⊗ W ( µ [2] ) ⊗· · ·⊗ W ( µ [ r ] ) W ( λ ) � µ ∈ Λ + n , r ( m ) β λµ is computed by a generalization of Littlewood-Richardson rule. . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 18 / 25

  84. Weyl modules and simple modules of S n , r Assume that m k ≥ n for all k = 1 , . . . , r − 1 . Then we have U ↠ S n , r . S n , r : quasi-hereditary algebra. � Λ + n , r ( m ) : = { λ ∈ Λ n , r ( m ) � λ (1 , k ) ≥ λ (2 , k ) ≥ · · · ≥ λ ( m k , k ) for all k = 1 , . . . , r } � n , r ( m ) } : a set of standard (Weyl) modules of S n , r . � � λ ∈ Λ + { W ( λ ) � n , r ( m ) } = { simple S n , r -modules } / iso. . � � λ ∈ Λ + { L ( λ ) : = Top W ( λ ) � . Proposition . As a U -module, W ( λ ) (resp. L ( λ ) ) is a h.w. module with h.w. ( λ, φ, c ) , where ± 1 φ ± q ± (1 − t ) ( q − q − 1 ) Φ ± t ( q c k + 2(1 − i ) , q c k + 2(2 − i ) , . . . , q c k + 2( λ ( i , k ) − i ) ) ( i , k ) , t = . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 18 / 25

  85. Harish-Chandra Ind and Res Recall the generators of U : { } X ± ( i , k ) , t , K ± ( j , l ) , H ± � � ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r X = ( j , l ) , t , C k . � Put U P : subalg. of U gen. by X \ { X − � � 1 ≤ k ≤ r − 1 , t ≥ 0 } � ( m k , k ) , t U L : subalg. of U gen. by X \ { X ± � � 1 ≤ k ≤ r − 1 , t ≥ 0 } � ( m k , k ) , t . Lemma . U L ֒ → U P ֒ → U − ↠ → g id U L � U [1] ⊗ U [2] ⊗ · · · ⊗ U [ r ] where U [ k ] is an ass. algebra generated by � { } X ± ( i , k ) , t , K ± ( j , k ) , H ± ( j , k ) , t , C k � � 1 ≤ i ≤ m k − 1 , 1 ≤ j ≤ m k , t ≥ 0 � with the same defining relations of U . . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 19 / 25

  86. Harish-Chandra Ind and Res Recall the generators of U : { } X ± ( i , k ) , t , K ± ( j , l ) , H ± � � ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r X = ( j , l ) , t , C k . � Put U P : subalg. of U gen. by X \ { X − � � 1 ≤ k ≤ r − 1 , t ≥ 0 } � ( m k , k ) , t U L : subalg. of U gen. by X \ { X ± � � 1 ≤ k ≤ r − 1 , t ≥ 0 } � ( m k , k ) , t . Lemma . U L ֒ → U P ֒ → U − ↠ → g id U L � U [1] ⊗ U [2] ⊗ · · · ⊗ U [ r ] where U [ k ] is an ass. algebra generated by � { } X ± ( i , k ) , t , K ± ( j , k ) , H ± ( j , k ) , t , C k � � 1 ≤ i ≤ m k − 1 , 1 ≤ j ≤ m k , t ≥ 0 � with the same defining relations of U . . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 19 / 25

  87. Harish-Chandra Ind and Res Recall the generators of U : { } X ± ( i , k ) , t , K ± ( j , l ) , H ± � � ( i , k ) ∈ Γ ′ ( m ) , ( j , l ) ∈ Γ ( m ) , t ≥ 0 , 1 ≤ k ≤ r X = ( j , l ) , t , C k . � Put U P : subalg. of U gen. by X \ { X − � � 1 ≤ k ≤ r − 1 , t ≥ 0 } � ( m k , k ) , t U L : subalg. of U gen. by X \ { X ± � � 1 ≤ k ≤ r − 1 , t ≥ 0 } � ( m k , k ) , t . Lemma . U L ֒ → U P ֒ → U − ↠ → g id U L � U [1] ⊗ U [2] ⊗ · · · ⊗ U [ r ] where U [ k ] is an ass. algebra generated by � { } X ± ( i , k ) , t , K ± ( j , k ) , H ± ( j , k ) , t , C k � � 1 ≤ i ≤ m k − 1 , 1 ≤ j ≤ m k , t ≥ 0 � with the same defining relations of U . . . . . . . . Kentaro Wada ( Shinshu University) Drinfeld type realization of cyclotomic q -Schur algebras 12th March, 2012 19 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend