drawing phase diagrams using deep convolutional neural
play

Drawing phase diagrams using deep convolutional neural networks - PowerPoint PPT Presentation

Drawing phase diagrams using deep convolutional neural networks


  1. Drawing phase diagrams using deep convolutional neural networks ������� �������������� ������������������������������������� � Deep Learning and Physics 2018 � �������������������� J. Phys. Soc. Jpn., 85, 123706 (2016) J. Phys. Soc. Jpn., 86, 044708 (2017) J. Phys. Soc. Jpn., 86, 113704 (2017)

  2. outline • Analyze the wave function using deep convolutional neural network à phase diagram for quantum phase transition • What is Anderson metal-insulator transition (delocalization-localization transition)? • Deep 3d convolutional neural network approach (image recognition) • Various types of Anderson transitions • Quantum percolation transitions • Application to random topological insulator: real vs. k -space analysis 2

  3. Anderson localization • Wave propagation in random medium à constructive and destructive interferences (wave can be electron, microwave, light, sound, matter waves) à localization of wave (P.W. Anderson, ‘58) Ubiquitous phenomena in many fields of physics 3

  4. Anderson localization • Eigenfunctions are exponentially localized ⎛ ⎞ Ψ ( x ) = a ( x )exp − | x − x 0 | | ψ ( x , y )| 2 ⎜ ⎟ ξ ⎝ ⎠ Red-green, 80%. Red-green-blue, 99% Slevin –Ohtsuki ‘12 �

  5. 3d delocalized-localized w.f. Insulator (localized) Metal (delocalized) 5

  6. Anderson Model Non-interacting, random Hamiltonian , − W 2 < ε j < W ∑ ∑ H = ε j j j + V j ', j j ' j 2 j j ', j In magnetic fields U(1) matrix In the presence of spin-orbit interaction ∑ ∑ H = ε j j , σ j , σ + V j ', σ ', j , σ j ', σ ' j , σ j , σ j ', j , σ , σ ' 6 SU(2) matrix

  7. Lyapunov exponent and quasi 1D localization length Transfer matrix E ψ n = H n ψ n + V n , n + 1 ψ n + 1 + V n , n − 1 ψ n − 1 ⎛ ⎞ ⎛ ⎞ ψ n + 1 ψ n ⎟ = T n ⎜ ⎜ ⎟ V n + 1, n ψ n V n , n − 1 ψ n − 1 ⎝ ⎠ ⎝ ⎠ ⎛ ⎞ n ψ n ≈ exp − ⎜ ⎟ ξ q 1 D ( L ) ⎝ ⎠ n -1 n n +1

  8. Finite size scaling analysis ⎧ L 2 − d (delocalized, metal) ⎪ ⎪ 1/ ν ( W − W c )) = Γ ( L ) = F ( L / ξ ) = f ( L Γ c (critical) L / ξ q1d ( L )= ⎨ ⎪ L / ξ (localized, insulator) ⎪ ⎩ L L W c Slevin-Ohtsuki 2012 metal insulator

  9. Limit of transfer matrix • If the matrix elements between sites on n -th layer and n +1th layer, V n,n+1 = ⟨ n | H | n +1 ⟩ , is not invertible, we can not use transfer matrix. – This happens in the case of bcc and fcc lattices, quantum percolation and of localization on fractal lattice. • To draw a phase diagram in W - E space, – Fix E , change W , do FSS and obtain W c ( E ). – Then change E to E ’ and fix it, change W , FSS, W c ( E’ ). – …..

  10. Use 3D image recognition • 3D convolutional neural network • Train the neural network for a simple case, and use the trained neural network to analyze the more complex situations/systems. – Simple model: Anderson model of localization at the band center E =0. à used for training the neural network. – Application to • | E |>0 • In the presence of magnetic field • Random lattice (ex. quantum percolation)

  11. Models • Anderson model , − W 2 < ε j < W ∑ ∑ H = ε j j j + V j ', j j ' j 2 j j ', j • Quantum percolation * + ⟨*| , $ ! = ∑ % & ,% | ⟩ %+,% =0 or 1 $ Sites/bonds are occupied with probability p . For p > p c , a cluster connecting left side to right appears. https://en.wikipedia.org/wiki/Percolation_theory#/media/ File:Bond_percolation_p_51.png

  12. 3D CNN CONVOLUTION �� ����������� ��������� CONVOLUTION POOLING CONVOLUTION ����� ��� ��� � CONVOLUTION POOLING CONVOLUTION Diagonalize 14< W <16 17< W <19 Anderson model CONVOLUTION Size 40 � 40 � 40 Select E =0 POOLING 4000 eigen functions for metal and ins. DENSE

  13. Deep (9 weight layer) CNN 3D Anderson transition � �� (3�2�� ���a ������������c��� �������ja�������������c��c� ���� ������ �����������c� �c����� ������ ��c������c �u���c����� ������ �a0I�O[G�OUT ��������c�� �UL�SG] ��� �� �KI�OLOKJ�:OTKG�� ��� BTO���K:B ��i�a ��������� �������� 3�UVUZ� �ip�m����c����t�a� transfer matrix + FSS �� Mano-Ohtsuki, JPSJ ‘17 �

  14. Wave function of Anderson model vs. quantum percolation Anderson model quantum percolation Ujfalusi and Varga, PRB ‘14

  15. Phase diagram for quantum percolation =metal =metal � � � � � � � � � =insulator � Site percolation ; T. Mano and TO: J. Phys. Soc. Jpn. 86 , 113704 (2017) (white dashed line, Ujfalusi and Varga, ‘14 )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend