draft
play

Draft EE 8235: Lecture 23 1 Lecture 23: Optimal control of - PowerPoint PPT Presentation

Draft EE 8235: Lecture 23 1 Lecture 23: Optimal control of distributed systems Linear Quadratic Regulator (LQR) Linear: plant Quadratic: performance index Infinite horizon problem Algebraic Riccati Equation (ARE) Spatially


  1. Draft EE 8235: Lecture 23 1 Lecture 23: Optimal control of distributed systems • Linear Quadratic Regulator (LQR) ⋆ Linear: plant ⋆ Quadratic: performance index ⋆ Infinite horizon problem ⋆ Algebraic Riccati Equation (ARE) • Spatially invariant systems ⋆ LQR: also spatially invariant ⋆ Feedback gains decay exponentially with spatial distance • Examples ⋆ Distributed control ⋆ Boundary control

  2. Draft EE 8235: Lecture 23 2 Linear Quadratic Regulator � ∞ � � minimize J = � ψ ( t ) , Q ψ ( t ) � + � u ( t ) , R u ( t ) � d t 0 subject to ψ t ( t ) = A ψ ( t ) + B u ( t ) , ψ (0) ∈ H • Finite dimensional problems ⋆ Optimal controller determined by − K ψ ( t ) u ( t ) = R − 1 B T P K = ⋆ P = P ∗ – non-negative solution to ARE A ∗ P + P A + Q − P B R − 1 B ∗ P = 0 ⋆ ARE – quadratic equation in the elements of P

  3. Draft EE 8235: Lecture 23 3 • Infinite dimensional problems ⋆ Optimal controller determined by u ( t ) = −K ψ ( t ) R − 1 B † P K = ⋆ P = P † – bounded non-negative operator that solves ARE � � � B † P ψ 1 , R − 1 B † P ψ 2 � 1 1 2 ψ 1 , Q 2 ψ 2 �A ψ 1 , P ψ 2 � + �P ψ 1 , A ψ 2 � + Q − = 0 ψ 1 , ψ 2 ∈ D ( A ) ⋆ ARE – operator-valued equation in the unknown P

  4. Draft EE 8235: Lecture 23 4 An example • Mass-spring system on a line � � � � � � � � ˙ 0 0 p I p = + u v ˙ T 0 v I   − 2 1 0 0 1 − 2 1 0   ∼ T   0 1 − 2 1   − 2 0 0 1 In class: use Matlab to illustrate structure of optimal feedback gains

  5. Draft EE 8235: Lecture 23 5 Structure of optimal solution log 10 ( | K p | ) : K p : diag ( K p ) : K p (25 , :) :

  6. Draft EE 8235: Lecture 23 6 ✲ G 0 ✲ G 1 ✲ G 2 ✲ ✛ ✛ ✛ ✛ ✻ ✻ ✻ ❄ ❄ ❄ K           u 1 ( t ) ∗ ∗ ∗ ∗ p 1 ( t ) ∗ ∗ ∗ ∗ v 1 ( t ) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ u 2 ( t ) p 2 ( t ) v 2 ( t )            = −  −           ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ u 3 ( t ) p 3 ( t ) v 3 ( t )         u 4 ( t ) ∗ ∗ ∗ ∗ p 4 ( t ) ∗ ∗ ∗ ∗ v 4 ( t ) � �� � � �� � K p K v • Observations: ⋆ LQR – centralized controller ⋆ Diagonals almost constant (modulo edges) ⋆ Off-diagonal decay of centralized gain

  7. Draft EE 8235: Lecture 23 7 Spatially invariant systems ψ t ( x, t ) = [ A ψ ( · , t ) ] ( x ) + [ B u ( · , t ) ] ( x ) spatial coordinate: x ∈ G translation invariant operators: A , B S PATIAL F OURIER TRANSFORM ˙ ˆ A ( κ ) ˆ ˆ ψ ( κ, t ) + ˆ B ( κ ) ˆ ψ ( κ, t ) = u ( κ, t ) spatial frequency: κ ∈ ˆ G A ( κ ) , ˆ ˆ B ( κ ) multiplication operators:  R reals    G R S Z Z N Z integers ˆ S unit circle G R Z S Z N    integers modulo N Z N

  8. Draft EE 8235: Lecture 23 8 • Partial Differential Equations ⋆ Constant coefficients + Infinite spatial extent ψ t ( x, t ) = ψ xx ( x, t ) + u ( x, t ) , x ∈ R   � Fourier transform ˙ ψ ( κ, t ) = − κ 2 ˆ ˆ u ( κ, t ) , κ ∈ R ψ ( κ, t ) + ˆ ⋆ Constant coefficients + Periodic domain ψ t ( x, t ) = ψ xx ( x, t ) + u ( x, t ) , x ∈ S   � Fourier series ˙ ψ ( κ, t ) = − κ 2 ˆ ˆ u ( κ, t ) , κ ∈ Z ψ ( κ, t ) + ˆ

  9. Draft EE 8235: Lecture 23 9 • Spatially discrete systems (Interconnected ODEs) ⋆ Constant coefficients + Infinite lattices � � � � 0 1 0 ˙ ψ ( x, t ) = ψ ( x, t ) + u ( x, t ) , x ∈ Z S − 1 − 2 + S 1 0 1   � Z -transform evaluated at z = e j κ � � � � 0 1 0 ˙ ˆ ˆ ψ ( κ, t ) = ψ ( κ, t ) + u ( κ, t ) , κ ∈ S ˆ 2 (cos κ − 1) 0 1

  10. Draft EE 8235: Lecture 23 10 ⋆ Constant coefficients + Circular lattices Example: Mass-spring system on a circle � � � � 0 1 0 ˙ ψ ( x, t ) = ψ ( x, t ) + u ( x, t ) , x ∈ Z N S − 1 − 2 + S 1 0 1   � discrete Fourier transform � � � � 0 1 0 ˙ ˆ ˆ u ( κ, t ) , κ ∈ Z N ψ ( κ, t ) = ψ ( κ, t ) + ˆ � � cos 2 π κ 2 − 1 0 1 N

  11. Draft EE 8235: Lecture 23 11 LQR for spatially invariant system over Z N � ∞ � � ψ ∗ ( t ) Q ψ ( t ) + u ∗ ( t ) R u ( t ) minimize J = d t 0 ˙ subject to ψ ( t ) = A ψ ( t ) + B u ( t ) • Circulant matrices: A , B , Q , R ⋆ Jointly unitarily diagonalizable by DFT Matrix V ˙ ˆ A d ˆ ψ ( t ) = ψ ( t ) + B d ˆ u ( t ) � � ˆ = V A V ∗ = diag A ( κ ) A d ψ ∗ Q ψ ψ ∗ Q d ˆ ˆ = ψ ⋆ Entries into ARE – diagonal matrices d P d + P d A d + Q d − P d B d R − 1 A ∗ d B ∗ d P d = 0 � A ∗ ( κ ) ˆ ˆ P ( κ ) + ˆ P ( κ ) ˆ A ( κ ) + ˆ Q ( κ ) − ˆ P ( κ ) ˆ B ( κ ) ˆ R − 1 ( κ ) ˆ B ∗ ( κ ) ˆ P ( κ ) = 0 , κ ∈ Z N

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend