draft
play

Draft EE 8235: Lecture 27 1 Lecture 27: Optimal control of - PowerPoint PPT Presentation

Draft EE 8235: Lecture 27 1 Lecture 27: Optimal control of undirected graphs Single-integrator dynamics x i = u i + d i Relative information exchange with neighbors u i ( t ) = k ij x i ( t ) x j ( t ) j N i


  1. Draft EE 8235: Lecture 27 1 Lecture 27: Optimal control of undirected graphs • Single-integrator dynamics x i = u i + d i ˙ • Relative information exchange with neighbors � � � u i ( t ) = − k ij x i ( t ) − x j ( t ) j ∈ N i • Closed-loop dynamics x ( t ) = − L ( k ) x ( t ) + d ( t ) ˙ � graph topology • Structured matrix L depends on vector of feedback gains k

  2. Draft EE 8235: Lecture 27 2 • Independent of graph topology and feedback gains L ( k ) 1 = 0 · 1 Average mode N 1 � x ( t ) = ¯ x i ( t ) : undergoes random walk N i = 1 If other modes are stable, x i ( t ) fluctuates around ¯ x ( t ) deviation from average: x i ( t ) = x i ( t ) − ¯ ˜ x ( t ) � � x T ( t ) ˜ steady-state variance: t → ∞ E lim ˜ x ( t )

  3. Draft EE 8235: Lecture 27 3 Optimal control problem What graph topologies lead to small variance? How to design feedback gains to minimize variance? x ( t ) ˙ = − L ( k ) x ( t ) + d ( t ) � � � � 1 N 11 T I − x ( t ) ˜ z ( t ) = = x ( t ) u ( t ) − L ( k ) • Setup: ⋆ Undirected graphs: bi-directional interaction between nodes ⋆ Symmetric feedback gains L ( k ) = L T ( k ) k ij = k ji ⇒

  4. Draft EE 8235: Lecture 27 4 Incidence matrix • Edge l ∼ ( i, j ) : connects nodes i and j ⋆ Define e l ∈ R N with only two nonzero entries ( e l ) i = 1 ( e l ) j = − 1 Incidence matrix: E = [ e 1 · · · e m ]   1 1 1   x 1 − x 2 − 1 0 0   E T x = E T 1 = 0  , E =  , x 1 − x 3    0 − 1 0  x 1 − x 4 0 0 − 1 Edge l ∼ ( i, j ) : k l := k ij = k ji m � L ( K ) = E K E T = k l e l e T Laplacian: l l = 1   k 1 ...   Structured feedback gain: K =   k m

  5. Draft EE 8235: Lecture 27 5 Tree graphs • Trees: connected graphs with no cycles path star Incidence matrix of a tree E t ∈ R N × ( N − 1)   1 0 0 − 1 1 0   E t =   0 − 1 1   0 0 − 1   1 1 1 − 1 0 0   E t =   0 − 1 0   0 0 − 1

  6. Draft EE 8235: Lecture 27 6 • Coordinate transformation � � � � � � E T ψ ( t ) ψ ( t ) � � t E t ( E T t E t ) − 1 = x ( t ) ⇔ x ( t ) = 1 x ( t ) ¯ x ( t ) ¯ 1 N 1 T � �� � T − 1 � �� � T In new coordinates � ˙ � � � � � E T � � � E T ψ ( t ) ψ ( t ) � t t E t K E T E t ( E T t E t ) − 1 = − + d ( t ) 1 ˙ t x ( t ) ¯ x ( t ) ¯ 1 1 N 1 T N 1 T � � � � � � E T − E T t E t K 0 ψ ( t ) t = + d ( t ) 0 0 x ( t ) ¯ 1 N 1 T � � � � � 1 N 11 T I − ψ ( t ) � E t ( E T t E t ) − 1 z ( t ) = 1 − E t K E T x ( t ) ¯ t

  7. Draft EE 8235: Lecture 27 7 Tree graphs: structured optimal H 2 design ˙ − E T t E t K ψ ( t ) + E T ψ ( t ) = t d ( t ) � � E t ( E T t E t ) − 1 z ( t ) = ψ ( t ) − E t K H 2 norm (from d to z ) � � J ( K ) = 1 t E t ) − 1 K − 1 + KE T ( E T 2 trace t E t   k 1 ...   Diagonal matrix: K =   k N − 1 • Structured optimal feedback gains �� � − 1 E T t E t ii k i = , i = 1 , . . . , N − 1 2

  8. Draft EE 8235: Lecture 27 8 • In Lecture 28, I made a blunder on board while deriving the optimal values of k i Here is correct derivation: � � − 1 � � − 1 E T E T ⋆ G := t E t ⇒ diagonal elements of G determined by G ii = t E t ii ⋆ All diagonal elements of E T t E t are equal to 2   e T 1 t E t = [ e 1 · · · e N − 1 ] T [ e 1 · · · e N − 1 ] = . E T   .  [ e 1 · · · e N − 1 ] .  e T N − 1     e T e T e T 1 e 1 · · · 1 e N − 1 2 · · · 1 e N − 1 . . . . ... ...     . . . . =  = . . . .    e T e T e T N − 1 e 1 · · · N − 1 e N − 1 N − 1 e 1 · · · 2 ⋆ K – diagonal matrix ⇒ J ( K ) can be written as N − 1 � G ii � � J ( K ) = + k i 2 k i i = 1 ⋆ J ( K ) in a separable form ⇒ element-wise minimization will do � � G ii � d = − G ii G ii + k i + 1 = 0 ⇒ k i = 2 , i = 1 , . . . , N − 1 2 k 2 d k i 2 k i i

  9. Draft EE 8235: Lecture 27 9 Optimal gains for star and path � N − 1 1 • Star: uniform gain k = ≈ √ for large N 2 N 2 • Path: � i ( N − i ) k i = 2 N largest gains in the center

  10. Draft EE 8235: Lecture 27 10 General undirected graphs • Decompose graph into a tree subgraph and remaining edges � E t � Incidence matrix: E = E c � − 1 E T � Π = E t E + E T = E t t E t Projection matrix: t t E c ∈ range (Π) : E c = Π E c       1 0 0 1 1 0 0 1 − 1 1 0 0 − 1 1 0 0        =  ∪       0 − 1 1 − 1 0 − 1 1 − 1     0 0 − 1 0 0 0 − 1 0 � E t � E t � � E = E c = Π E c � t E t ) − 1 E T � ( E T = E t I t E c = E t M

  11. Draft EE 8235: Lecture 27 11 General graphs: structured optimal H 2 design t E t M K M T ψ ( t ) + E T ˙ − E T ψ ( t ) = t d ( t ) � � � � − 1 E T E t t E t z ( t ) = ψ ( t ) − E t M K M T tree graphs: M = I H 2 norm (from d to z ) � � � J ( K ) = 1 M K M T � − 1 + M K M T E T � − 1 � E T 2 trace t E t t E t • Main result: M K M T > 0 ⋆ Closed-loop stability ⇔ { W 1 > 0 , W 2 = W T 2 } then − W 1 W 2 Hurwitz ⇔ W 2 > 0 ⋆ M K M T > 0 ⇒ convexity of J ( K )

  12. Draft EE 8235: Lecture 27 12 • Semi-definite program 1 � � X + M K M T E T minimize 2 trace t E t � � ( E T t E t ) − 1 / 2 X > 0 t E t ) − 1 / 2 ( E T M K M T subject to K diagonal • Use CVX to solve it cvx_begin sdp variable k(Ne) % vector of unknown feedback gains variable X(Nv-1,Nv-1) symmetric; X == semidefinite(Nv-1); % Schur complement variable Mk = M*diag(k)*M’; % Matrix Mk minimize(0.5*trace( q*X + r*Mk*W )) subject to [X, invWh; invWh, Mk] > 0; cvx_end

  13. Draft EE 8235: Lecture 27 13 Examples • Compare with performance of uniform gain design J ∗ ( J − J ∗ ) /J ∗ J ( k = 1) 9 . 1050 13 . 1929 45%

  14. Draft EE 8235: Lecture 27 14 • Analytical results for circle and complete graphs � N 2 − 1 ⋆ Circle uniform gain k = 24 N 2 ⋆ Complete graph uniform gain k = N

  15. Draft EE 8235: Lecture 27 15 Additional material • Papers to read ⋆ Xiao, Boyd, Kim, J. Parallel Distrib. Comput. ’07 ⋆ Zelazo & Mesbahi, IEEE TAC ’11 ⋆ Lin, Fardad, Jovanovic, CDC ’10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend