draft
play

Draft EE 8235: Lecture 12 1 Lecture 12: Waves, beams, . . . - PowerPoint PPT Presentation

Draft EE 8235: Lecture 12 1 Lecture 12: Waves, beams, . . . Objective: study dynamics of waves and beams Approach: identify commonalities between the two equations Inner product that induces energy of wave/beam Square-root of a


  1. Draft EE 8235: Lecture 12 1 Lecture 12: Waves, beams, . . . • Objective: study dynamics of waves and beams • Approach: identify commonalities between the two equations ⋆ Inner product that induces energy of wave/beam ⋆ Square-root of a positive self-adjoint operator

  2. Draft EE 8235: Lecture 12 2 Wave equation φ tt ( x, t ) = φ xx ( x, t ) φ ( x, 0) = f ( x ) , φ t ( x, 0) = g ( x ) φ ( ± 1 , t ) = 0 � � � � ψ 1 ( t ) φ ( · , t ) Define ψ ( t ) = = and write an abstract evolution equation: ψ 2 ( t ) φ t ( · , t ) � ˙ � � � � � ψ 1 ( t ) 0 I ψ 1 ( t ) = ˙ d 2 / d x 2 0 ψ 2 ( t ) ψ 2 ( t ) � I 0 � � � ψ 1 ( t ) φ ( t ) = ψ 2 ( t ) • Dynamical generator A 0 = − d 2 � � 0 I A = , −A 0 0 d x 2 f ∈ L 2 [ − 1 , 1] , d 2 f � � D ( A 0 ) = d x 2 ∈ L 2 [ − 1 , 1] , f ( ± 1) = 0

  3. Draft EE 8235: Lecture 12 3 Euler-Bernoulli beam φ tt ( x, t ) = − φ xxxx ( x, t ) φ ( x, 0) = f ( x ) , φ t ( x, 0) = g ( x ) φ ( ± 1 , t ) = 0 φ xx ( ± 1 , t ) = 0 � � � � ψ 1 ( t ) φ ( · , t ) Define ψ ( t ) = = and write an abstract evolution equation: ψ 2 ( t ) φ t ( · , t ) � ˙ � � � � � ψ 1 ( t ) 0 I ψ 1 ( t ) = ˙ − d 4 / d x 4 0 ψ 2 ( t ) ψ 2 ( t ) � I 0 � � � ψ 1 ( t ) φ ( t ) = ψ 2 ( t ) • Dynamical generator d 4 � � 0 I A = , A 0 = −A 0 0 d x 4 f ∈ L 2 [ − 1 , 1] , d 4 f � � d x 4 ∈ L 2 [ − 1 , 1] , f ( ± 1) = f ′′ ( ± 1) = 0 D ( A 0 ) =

  4. Draft EE 8235: Lecture 12 4 Simply supported and cantilever beams • Simply supported beams φ (0 , t ) = φ ( L, t ) = 0 φ xx (0 , t ) = φ xx ( L, t ) = 0 • Cantilever beams φ (0 , t ) = 0 , φ x (0 , t ) = 0 φ xx ( L, t ) = 0 , φ xxx ( L, t ) = 0

  5. Draft EE 8235: Lecture 12 5 Square-root of a positive operator • Self-adjoint operator A : H ⊃ D ( A ) − → H is ⋆ positive � ψ, A ψ � > 0 for all non-zero ψ ∈ D ( A ) ⋆ coercive: if there is ǫ > 0 such that � ψ, A ψ � > ǫ � ψ � 2 for all ψ ∈ D ( A ) 1 • Self-adjoint, non-negative A has a unique non-negative square-root A 2 1  D ( A 2 ) ⊃ D ( A )     1 1 2 ψ ∈ D ( A A 2 ) for all ψ ∈ D ( A )   1 1  2 A 2 ψ = A ψ A for all ψ ∈ D ( A )  1 positive A ⇒ positive A 2

  6. Draft EE 8235: Lecture 12 6 • Examples of positive, self-adjoint operators: A 0 = − d 2 f ∈ L 2 [ − 1 , 1] , d 2 f � � d x 2 , D ( A 0 ) = d x 2 ∈ L 2 [ − 1 , 1] , f ( ± 1) = 0 d 4 f ∈ L 2 [ − 1 , 1] , d 4 f � � d x 4 ∈ L 2 [ − 1 , 1] , f ( ± 1) = f ′′ ( ± 1) = 0 A 0 = d x 4 , D ( A 0 ) = 1 D ( A 0 ) – determined from the following requirement: 2 1 1 � � A 0 f, A 2 0 g 2 = � f, A 0 g � , for all g ∈ D ( A 0 ) • For beam (wave left for homework): 0 = − d 2 f ∈ L 2 [ − 1 , 1] , d 2 f � � 1 1 A 2 d x 2 , D ( A 0 ) = 2 d x 2 ∈ L 2 [ − 1 , 1] , f ( ± 1) = 0

  7. Draft EE 8235: Lecture 12 7 Abstract evolution equation � ˙ � � � � � ψ 1 ( t ) 0 I ψ 1 ( t ) = ˙ −A 0 − a 1 I ψ 2 ( t ) ψ 2 ( t ) Hilbert space: � � 1 D ( A 0 ) 2 H = L 2 [ − 1 , 1] Inner product: �� � � �� f 1 f 2 � φ 1 , φ 2 � e = , g 1 g 2 e 1 1 � � = A 0 f 1 , A 2 0 f 2 2 + � g 1 , g 2 � Energy:  2 � ψ 1 x , ψ 1 x � + 1 1 2 � ψ 2 , ψ 2 � wave     E ( t ) = 1 2 � ψ 1 xx , ψ 1 xx � + 1  2 � ψ 2 , ψ 2 � beam   

  8. Draft EE 8235: Lecture 12 8 • Adjoint of A (w.r.t. �· , ·� e ): � � D ( A 0 ) � � � � 0 I 0 − I ⇒ A † = , D ( A † ) = D ( A ) = A = 1 −A 0 − a 1 I A 0 − a 1 I D ( A 0 ) 2 • In class: � � 1 D ( A 0 ) 2 ⋆ well-posedness on H = using Lumer-Phillips L 2 [ − 1 , 1] ⋆ spectral decomposition of A for the undamped wave equation ⋆ solution to the undamped wave equation ⋆ mention different forms of internal damping in beams

  9. Draft EE 8235: Lecture 12 9 Spectral decomposition of the undamped wave equation  ψ 2 = λ ψ 1  � � � � � � 0 I ψ 1 ψ 1  ψ ′′ = λ ⇒ = λ ψ 2 1 ∂ xx 0 ψ 2 ψ 2  0 = ψ 1 ( ± 1)  • Showed:  � � λ n = + j nπ (1 /λ n ) φ n ( x ) 2 , v n ( x ) =   φ n ( x )     λ 2 ψ 1  � ψ ′′ =   � � λ − n = − j nπ n ∈ N (1 /λ n ) φ n ( x ) 1 − − − → 2 , v − n ( x ) = 0 = ψ 1 ( ± 1) − φ n ( x )     � nπ  �   φ n ( x ) = sin 2 ( x + 1)   ☞ { v n } n ∈ Z \ 0 – complete orthonormal basis (w.r.t. �· , ·� e )

  10. Draft EE 8235: Lecture 12 10 Solution of the undamped wave equation • Represent the solution as ∞ ∞ � � ψ ( x, t ) = α n ( t ) v n ( x ) + α − n ( t ) v − n ( x ) n = 1 n = 1 � ( α n ( t ) + α − n ( t )) 1 ∞ � λ n φ n ( x ) � = ( α n ( t ) − α − n ( t )) φ n ( x ) n = 1 � a n ( t ) 1 ∞ � λ n φ n ( x ) � = ⇒ { a n ( t ) ∈ j R , b n ( t ) ∈ R } b n ( t ) φ n ( x ) n = 1 • Substitute into the evolution model � ˙ � � � � � a n ( t ) 0 j nπ/ 2 a n ( t ) α n ( t ) = +j nπ  = ˙ ˙ 2 α n ( t ) j nπ/ 2 0 b n ( t ) b n ( t )   ⇒ α − n ( t ) = − j nπ � nπ � nπ � � � � � � � � a n ( t ) cos 2 t j sin 2 t a n (0) ˙ 2 α − n ( t )  =  � nπ � nπ � � b n ( t ) j sin 2 t cos 2 t b n (0)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend