double beta decay experiment
play

double beta decay experiment Benjamin Schmidt for the CUPID-Mo - PowerPoint PPT Presentation

TAUP 2019, Toyama - 9/11/2019 First data from the CUPID-Mo neutrinoless double beta decay experiment Benjamin Schmidt for the CUPID-Mo Collaboration The CUPID-Mo collaboration Members from China, France, Germany, Italy, Russia, Ukraine and USA


  1. TAUP 2019, Toyama - 9/11/2019 First data from the CUPID-Mo neutrinoless double beta decay experiment Benjamin Schmidt for the CUPID-Mo Collaboration

  2. The CUPID-Mo collaboration Members from China, France, Germany, Italy, Russia, Ukraine and USA B. Schmidt Toyama, TAUP 2019 - 09/11/2019

  3. Reminder of the bolometric technology – CUORE Reminder -Talk Neutrino#10 Tu, 16.30 New results from the CUORE experiment D E ROI Copper: Thermal Bath Teflon: weak thermal link NTD-Ge thermistor Thermal bath @ 10 mK NTD-Ge • thermistor Excellent energy resolution CUORE • Multiple isotopes can be used in as sensor 750g TeO 2 bolometric measurement C(T) a T 3 Si heater crystals • Ton scale cryogenic infrastructure at LNGS • Background limited 3 B. Schmidt Toyama, TAUP 2019 - 09/11/2019

  4. CUPID = CUORE Upgrade with Particle Identification Other isotopes CUORE: Experimental sensitivity with Bg 214 Bi 208 Tl Idea: a | b & g particle discrimination via detection of Cherenkov or Scintillation light Light yield from scintillating • compounds like Li 2 MoO 4 is > 1 keV at Q bb No prominent g line from natural • decay chains above 2614.5 keV No Background ( 208 Tl) See also arXiv:1907.09376 4 B. Schmidt Toyama, TAUP 2019 - 09/11/2019

  5. CUPID-Mo experiment Operated at LSM by the EDELWEISS/CUPID-Mo collaborations, • follow up of the LUMINEU experiment 20 x ~210 g cylindrical Li 2 MoO 4 crystals enriched to ~97% in • 100 Mo, dimensions: ø 44 mm x 45 mm Ge wafer with SiO anti-reflective coating as light detector • Ge-NTD (on both Li 2 MoO 4 and Ge light detector) • Cu holder (citric-acid etching for surface treatment) • 3M Vikutui reflectors • enhance LY to ~0.7 keV/MeV (peaked at ~600 nm) First data: • arXiv:1909.02994 Commissioning & setup March/April 2019 • Physics data taking since April – June 2019 • 5 B. Schmidt Toyama, TAUP 2019 - 09/11/2019

  6. CUPID-Mo commissioning 20 Li 2 MoO 4 , 19 LD, 18 Pulser lines Example LMO avg. pulse • operational @ 20.7 mK Median Baseline resolutions • 19/20 LMO: 1.96 keV 18/19 LD: 148 eV > 99.9% alpha separation expected Li 2 MoO 4 pulse characteristics • 25 ms rise, 300 ms decay time (20.7 mK) • Ge light detector • 4 ms rise * , 9 ms • decay time Example Heat/Light * limited by sampling & AC bias separation Summed energy resolution • Li 2 MoO 4 : 5.3 keV FWHM * ( * bias from gain stabilization) Good uniformity/performance • suitable for larger arrays! arXiv:1909.02994 6 B. Schmidt Toyama, TAUP 2019 - 09/11/2019

  7. CUPID-Mo first data – U/Th calibration 208 Tl & ~10 days of e +- U/Th calibration 214 Bi 228 Ac 214 Pb 228 Ac 214 Bi 208 Tl 214 Bi DE 214 Bi 208 Tl 214 Bi SE Optimum Filter analysis tuned to mitigate • surplus microphonics noise 214 Bi Data quality cuts: • Data quality selection on unstable • cryogenic periods Basic cuts: pile up rejection and • anticoincidence cuts Light Yield cut for b/g events • Pulse shape cut on 4 normalized shape • variables Characteristic resolution @2614.5 keV • 6.7 keV FWHM, H. mean 19/20 channels 7 B. Schmidt Toyama, TAUP 2019 - 09/11/2019

  8. Resolution & Energy scaling of CUPID-Mo detectors Harm. Mean: DE 6.7 keV FWHM 214 Bi Spread (RMS): 1.9 keV 214 Bi 208 Tl 214 Bi 228 Ac 214 Bi 208 Tl 214 Pb Expected energy resolution (FWHM) at Q bb 3034 keV: • (7.7 ± 0.4) keV Simultaneous UEML fit (common multi-Compton ratio • & background, 19 individual resolutions) 8 B. Schmidt Toyama, TAUP 2019 - 09/11/2019

  9. CUPID-Mo - First physics data 99 Mo CUPID-Mo 0.5 kg*yr Optimum Filter based Amplitude estimate • e +- 60 Co 60 Co Thermal gain stabiliation on 208 Tl 214 Bi 214 Pb 40 K (calibration data) Data quality cuts: • 212 Pb 208 Tl Data quality selection on unstable • cryogenic periods (4%) 208 Tl Basic cuts: pile up rejection and • anticoincidence cuts Light Yield cut for b / g events • Pulse shape cuts on 4 normalized • pulse shape parameters (Risetime, Decaytime, Pulse maximum, Baseline slope) Energy resolution ~ (7.8 ± 0.9) keV FWHM • @2614.5 keV, 19/20 channels 9 B. Schmidt Toyama, TAUP 2019 - 09/11/2019

  10. Energy scale and resolution (FWHM) physics data 208 Tl 208 Tl 60 Co 40 K 60 Co 60 Co 60 Co 40 K 99 Mo 99 Mo Energy resolution (FWHM) at Q bb 3034 keV: • 208 Tl 60 Co 40 K (6.6 ± 1.1) keV 99 Mo Uncertainty and bias on energy scale from 2nd order • Q bb 60 Co poynomial fit. — > D E = (0.0 ± 1.6) keV 10 B. Schmidt Toyama, TAUP 2019 - 09/11/2019

  11. CUPID-Mo – The region of interest Exposure: 0.5 kg*yr (~2 month) • ~5 times the LUMINEU Li 2 MoO 4 statistics 100 Mo with shortest T 1/2 of all 2 nbb isotopes: (6.90 ± 0.15 (stat.) ± 0.37 (syst.)) * 10 18 yr Eur. Phys. J. C (2017) 77: 785 • Spectrum dominated by 2 nbb decay above ~ 500 keV (expected) (new 2 nbb half-live evaluation in preparation) First part of physics data 99 Mo 99 Mo a Energy & cuts ( > 2.8 MeV ) Summed spectrum: 0.5 kg*yr g Energy & cuts 60 Co 60 Co 40 K 210 Po 40 K 208 Tl 208 Tl Light Yield 234 U/ 226 Ra ROI 3034 keV cut B. Schmidt Toyama, TAUP 2019 - 09/11/2019 11

  12. 100 MoO 4 Radiopurity of Li 2 Minimal cuts (pile-up cut)  • Uranium 210 Po > 97% signal acceptance 218 Po 238 U 234 Th + s = 5.2 keV Estimate contamination in ± 15 keV window • 226 Ra 210 Po ( 210 Pb) ~ 158(3) m Bq/kg • 222 Rn 190 Pt 0.37(15) m Bq/kg • 230 Th • degraded alphas [3,4] MeV: 0.16(2) counts/kev/kg/yr • No bg subtraction yet; 210 Po Thorium expect up to 2 accidental 228 Th counts 224 Ra 232 Th Contamination for both Th- and U-series are ~10 x better than assumed in CUPID preCDR 212 Bi ( arXiv: 1907.09376) U: ~0.5 m Bq/kg Th: ~0.3 m Bq/kg 12 B. Schmidt Toyama, TAUP 2019 - 09/11/2019

  13. Bg for 100 Mo in CUPID-Mo & beyond Degraded alphas: • 0.16(2) counts/keV/kg/yr • Rejection by Light Yield: Detector performance compatible with > 99.9% • gaussian separation Will be further studied from data with high statistics AmBe calibration Natural radioactivity - Surface & bulk: • 214 Bi beta (3.3 MeV Q-value) 208 Tl beta (5 MeV Q-value) Th chain: 232,228 Th ~ 0.3 m Bq/kg (bulk) • U chain: 238,234 U, 230 Th, 226 Ra ~ 0.5 m Bq/kg (bulk) • Further surface & bulk contaminations – to be studied with Geant4 MC • --> Background model fit CUPID-Mo Random gamma pile-up ( 100 Mo 2 nbb , …) • ~ 0.5 kg*yr physics data r • 208 Tl 2615 keV NTD light detectors with Neganov-Luke amplification or TES/MMC sensors can • give >10x improvement on T R Environmental muon/neutron bg • 100 Mo Q bb : 3034 keV (to be studied in more detail AmBe data) 7 Li+n --> 8 Li --> 8 Be + b (16 MeV endpoint) --> a+a • Cosmogenic activation/ muons & muon-induced events • 13 B. Schmidt Toyama, TAUP 2019 - 09/11/2019

  14. CUPID-Mo - Outlook Now: accumulated > 1 kg*yr of physics data • T 1/2 > 3*10 23 yr at 90% C.L with • ~0.5 kg*yr exposure (~0.27 kg*yr of 100 Mo), 81% signal acceptance Confirmed: Bolometric performance & • reproducibility, exceeded expectations for radiopurity (bulk) Next: Use Geant4 MC and data to build a • detailed background model NEMO 3 limit (~ 7 kg 100 Mo , 5 yr) Introduce data blinding • Phys. Rev. D 92(2015) 072011 T 1/2 > 1.1 x 10 24 yr Optimize 0 nbb analysis cuts • Goal : Reach > 2 kg * yr of physics • exposure, ~6 month with 19/20 detectors, CUPID-Mo accumulated 90% analysis efficiency Analyzed – 0.5 kg*yr 75% 0nbb containment 14 B. Schmidt Toyama, TAUP 2019 - 09/11/2019

  15. CUPID with 100 Mo Goal: Discover 0 nbb for effective m bb masses in the inverted hierarchy range; Explore the prospects to probe beyond arXiv:1907.09376 See Talk Neutrino#17 We,18.00 CUPID: CUORE Upgrade with Particle ID Details later in this session: Talk Neutrino#17 CUPID: CUORE Upgrade with Particle ID 15 B. Schmidt Toyama, TAUP 2019 - 09/11/2019

  16. Thank you – Toyama/TAUP 2019 B. Schmidt Toyama, TAUP 2019 - 09/11/2019

  17. Backup B. Schmidt Toyama, TAUP 2019 - 09/11/2019

  18. CUPID-Mo – The Bg spectrum translated to a limit Base cuts e = (97.1 ± 0.4)% • Rise + Decay time (unfiltered Pulseshape) e = (94.7 ± 0.1) % (LY + NormDelay + NormBaseline) e = (88.3 ± 0.3)% Total efficiency of all cuts • e = ( 81.1 ± 0.5)% Non blind analysis • NMEs: JHEP02 (2013) 025 Nucl. Phys. A 818, 139 (2009) T 1/2 > 3*10 23 yr at 90% C.L • Phys. Rev. C 87, 045501 (2013) Phys. Rev. C 87, 064302 (2014) Limit on m bb : 715 - 1190 meV • Phys. Rev. C 91, 034304 (2015) Phys. Rev. C 91, 024613 (2015) dependent on Nuclear Matrix Element Phys. Rev. C 91, 024309 (2015) Phys. Rev. C 91, 024316 (2015) Phys. Rev. Lett. 105, 252503 (2010) Phys. Rev. Lett. 111, 142501 (2013) 18 B. Schmidt Toyama, TAUP 2019 - 09/11/2019

  19. Evaluation of efficiencies - BaseCuts & M1 The alpha region - significant • 210 Pb/ 210 Po contamination && no line of sight between detectors  should all be M1 events Evaluate the most basic • efficiencies on this peak Efficiency of • SingleTrigger • !Filter_SuspectedPulser • Multiplicity1 cut • 1436/1479.0 counts • e = (97.1 ± 0.4)% 19 B. Schmidt Toyama, TAUP 2019 - 09/11/2019

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend