domino tilings lattice paths and plane overpartitions
play

Domino tilings, lattice paths and plane overpartitions Sylvie - PowerPoint PPT Presentation

Domino tilings, lattice paths and plane overpartitions Sylvie Corteel LIAFA, CNRS et Universit e Paris Diderot Etat de la recherche SMF - October 5th, 2009 Aztec diamond Aztec diamond of order n : 4 staircase of height n glued together.


  1. Domino tilings, lattice paths and plane overpartitions Sylvie Corteel LIAFA, CNRS et Universit´ e Paris Diderot Etat de la recherche SMF - October 5th, 2009

  2. Aztec diamond Aztec diamond of order n : 4 staircase of height n glued together.

  3. Domino Tilings Tile the aztec diamond of order n with n ( n + 1) dominos. 2( n +1 2 ) tilings of the aztec diamond of order n (Elkies et al 92)

  4. Flip

  5. Flip

  6. Flip

  7. Flip

  8. Flip

  9. Flip

  10. Flip Rank: minimal number of flips from the horizontal tiling

  11. Generating function Tiling T . Number of vertical dominos : v ( T ). Rank : r ( T ). n − 1 x v ( T ) q r ( T ) = � � (1 + xq 2 k +1 ) n − k . A n ( x , q ) = T tiling of order n k =0 (Elkies et al, Stanley, Benchetrit)

  12. Tilings and lattice paths

  13. Tilings and lattice paths • • • • • • • •

  14. Tilings and lattice paths • • • • • • • • Rule • • • • • •

  15. Tilings and lattice paths • • • • • • • • Rule • • • • • •

  16. Tilings and lattice paths • • • • • • • • Rule • • • • • •

  17. Tilings and lattice paths • • • • • • • • Rule • • • • • •

  18. Generating function • Vertical dominos = North-East and South-East steps • Rank = height of the paths + constant Non intersecting paths : Lindstr¨ om, Gessel-Viennot (70-80s) A n ( x , q ) = determinant (( x , q )-Schr¨ oder numbers) Combinatorics of lattice paths ⇒ A n ( x , q ) = (1 + xq ) m A n − 1 ( xq 2 , q ) , A 0 ( x , q ) = 1 . n − 1 � (1 + xq 2 k +1 ) n − k . A n ( x , q ) = k =0

  19. Artic circle • • • • • • • • • • • • • • • • (Johansson 05)

  20. Lattice paths and monotone triangles • • • • • • • • • • • • • • • • • •

  21. Lattice paths and monotone triangles • ¯ 3 • ¯ 4 3 • • • ¯ ¯ 2 3 5 • • • • • 2 3 4 5 • • • ¯ ¯ ¯ ¯ ¯ 1 2 3 4 5 • • • • •

  22. Lattice paths and monotone triangles • ¯ 3 • ¯ 4 3 • • • ¯ ¯ 2 3 5 • • • • • 2 3 4 5 • • • ¯ ¯ ¯ ¯ ¯ 1 2 3 4 5 • • • • • ¯ 3 ¯ 3 4 ¯ ¯ 2 3 5 2 3 4 5 ¯ ¯ ¯ ¯ ¯ 1 2 3 4 5

  23. Monotone triangles Monotone triangles with weights 2 on the non-diagonal rim hooks ¯ 3 ¯ 3 4 ¯ ¯ 2 3 5 2 3 4 5 ¯ ¯ ¯ ¯ ¯ 1 2 3 4 5 Alternating sign matrices with weight 2 on each -1. 0 0 1 0 0 0 0 0 1 0 0 1 0 − 1 1 0 0 0 1 0 1 0 0 0 0

  24. Domino Tilings and plane overpartitions

  25. Plane overpartitions

  26. Tilings and flips Flips and lattice steps

  27. Plane overpartitions An overpartition is a partition where the last occurrence of a part can be overlined. (¯ 6 , 5 , 5 , 5 , 3 , 3 , ¯ 3 , ¯ 1) C, Lovejoy (04) A plane overpartition is a two-dimensional array such that each row is an overpartition and each column is a superpartition. ¯ 5 5 5 3 ¯ 5 3 2 2 ¯ ¯ 5 3 ¯ 5 C. Savelief and Vuletic (09) Generating function : � i � 1 + q i q | Π | = � � . 1 − q i Π i ≥ 1

  28. Lattice paths and plane overpartitions Plane overpartitions of shape λ 1 + aq c x P i i λ i � q 1 − q h x x ∈ λ Krattenthaler (96), a = − q n Stanley content formula Reverse plane overpartitions included in the shape λ 1 + q h x � 1 − q h x x ∈ λ

  29. Related objects Plane overpartitions are in bijection with super semi-standard young tableaux. Representation of Lie Superalgebras Berele and Remmel (85), Krattenthaler (96) ¯ ¯ ¯ ¯ ¯ ¯ 5 4 3 3 2 2 1 5 3 2 1 1 3 1 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 4 4 3 2 1 1 1 4 2 1 4 3 2 1 ¯ ¯ ¯ ¯ ¯ 3 3 2 1 1 3 1 3 2 1 ↔ ¯ ¯ ¯ ¯ 3 2 1 2 4 2 ¯ 2 3

  30. Related objects Plane overpartitions are in bijection with diagonally strict partitions where each rim hook counts 2 Vuletic (07), Foda and Wheeler (07, 08) ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 5 4 3 3 2 2 1 5 4 3 3 2 2 1 ¯ ¯ ¯ ¯ ¯ 4 4 3 2 1 1 1 4 4 3 2 1 1 1 ¯ ¯ ¯ ¯ 3 3 2 2 1 3 3 2 2 1 ↔ ¯ ¯ 3 2 2 3 2 2 2 2

  31. Limit shape Diagonally strict polane partitions weighted by 2 k (Π) q | Π | Ronkin function of the polynomial P ( z , w ) = z + w + zw Vuletic (07)

  32. RSK type algorithms Generating function of plane overpartitions with at most r rows and c columns r c 1 + q i + j − 1 � � 1 − q i + j − 1 . i =1 j =1 Generating function of plane overpartitions with entries at most n � n n j =1 (1 + aq i + j ) � � i − 1 j =0 (1 − q i + j )(1 − aq i + j ) i =1 Generating function of plane overpartitions with at most r rows and c columns and entries at most n ?? NICE?

  33. Plane partitions Interlacing sequences 5 5 5 4 444 3 333 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 3 2 3 2 3 1 3 2 2 2 1 2 2 2 2 1 1 1 6 7 . . . 1 0 1 . . . Rhombus Tilings Generating function ∞ � i � 1 q | Π | = � � . 1 − q i Π i =1

  34. Plane partitions Plane partitions ↔ Non intersecting paths 3 3 2 3 3 3 3 2 1 1 3 3 1 1 1 2 2 1 2 2 a b c 1 − q i + j + k − 2 q | Λ | = � � � � 1 − q i + j + k − 1 i =1 j =1 k =1 Λ ∈P ( a , b , c )

  35. But... Plane overpartitions are not a generalization of plane partitions. ∞ (1 + aq i ) i − 1 a o (Π) q | Π | = � � ((1 − q i )(1 − aq i )) ⌊ ( i +1) / 2 ⌋ . | Π | i =1

  36. Plane (over)partitions levels 1 2 3 A Π ( t ) = (1 − t ) 10 (1 − t 2 ) 2 (1 − t 3 ) r c 1 − tq i + j − 1 A Π ( t ) q | Π | = � � � 1 − q i + j − 1 . Π ∈P ( r , c ) i =1 j =1 Vuletic (07) + Mac Donald case t = 0: plane partitions, t = − 1: plane overpartitions

  37. Hall-Littlewood functions Column strict plane partitions ↔ Plane partition Knuth (70) 4444  4444 4433  443 2221 3322  ↔ ,  443 111 111 22 MacDonald (95) 1 − tx i y j � � Q λ ( x ; t ) P λ ( y ; t ) = . 1 − x i y j λ i , j ⇒ r c 1 − tq i + j − 1 A Π ( t ) q | Π = � � � 1 − q i + j − 1 . Π ∈P ( r , c ) i =1 j =1

  38. Interlacing sequences A = (0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1) T Π = (1 − t ) 19 (1 − t 2 ) 4 (1 − t 3 ) 1 − tq j − i T Π q | Π | = � � 1 − q j − i Π i < j A [ i ]=0 , A [ j ]=1

  39. Skew (or reverse) plane partitions 1 − tq j − i 1 − tq h x � � 1 − q j − i = 1 − q h x . i < j x ∈ λ A [ i ]=0 , A [ j ]=1 t = 0 Gansner (76), Mac Donald case : Okada (09)

  40. Cylindric partitions Cylindric plane partitions of a given profile ( A 1 , . . . , A T ) ∞ 1 − tq ( i − j )( T )+( n − 1) T 1 � � 1 − q nT 1 − q ( i − j )( T )+( n − 1) T n =1 1 ≤ i , j ≤ T A i =1 , A j =0 t = 0 Gessel and Krattenthaler (97), Borodin (03)

  41. More ? • d -complete posets (Conjecture Okada 09) • Link between cylindric partitions ( t = 0) and the representation of ˆ sl n (Tingley 07) Thanks

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend