distributions for higgs jet at hadron colliders mssm vs
play

Distributions for Higgs + Jet at Hadron Colliders: MSSM vs SM - PowerPoint PPT Presentation

Distributions for Higgs + Jet at Hadron Colliders: MSSM vs SM Oliver Brein Institute for Particle Physics Phenomenology, University of Durham in collaboration with W. Hollik [see also 0705.2744 [hep-ph]; hep-ph/0305321] e-mail:


  1. Distributions for Higgs + Jet at Hadron Colliders: MSSM vs SM Oliver Brein Institute for Particle Physics Phenomenology, University of Durham in collaboration with W. Hollik [see also 0705.2744 [hep-ph]; hep-ph/0305321] e-mail: Oliver.Brein@durham.ac.uk

  2. outline : • Higgs + jet in the Standard Model • Higgs + jet in the MSSM • MSSM results

  3. LHC/CMS 5 σ discovery contours for the MSSM Higgs bosons

  4. • Higgs + jet in the Standard Model

  5. • Higgs + jet in the Standard Model – Higgs production @ the LHC SM Higgs production @ LHC mainly via gluon fusion: g H g Detection ( m H ≈ 100 − 140GeV): mainly via the rare decay H → γγ . → difficult ! huge background

  6. [ Higgs + jet in the SM ] – Higgs + jet suggestion: study Higgs events with a high- p T hadronic jet [R.K. Ellis et al. ’87; Baur, Glover ’89] (LO) [de Florian, Grazzini, Kunszt ’99] (NLO QCD) advantage: * richer kinematical structure compared to inclusive Higgs production. → allows for refined cuts → better S/B ratio disadvantage: * lower rate than inclusive Higgs production (*) NLO signal prediction has still sizable theoretical uncertainty ( ≈ 20%) (*) background only partly known at NLO accuracy → theoretical uncertainties larger than in the fully inclusive case (so far)

  7. [ Higgs + jet in the SM, Higgs + jet ] SM H+jet, partonic processes (mostly loop-induced) : • gg → Hg ( ≈ 50 - 70 % of total rate) • qg → Hq, ¯ qg → H ¯ q ( ≈ 30 - 50 % of total rate) b b b b • q ¯ q → Hg (rate small) b b b b recently simulated: pp → H + jet , H → γγ [Abdullin et al. ’98 & ’02; Zmushko ’02] pp → H + jet , H → τ + τ − → l + l − p T / [Mellado et al. ’05] result: H + jet production (e.g. with p T, jet ≥ 30 GeV , | η jet | ≤ 4 . 5) is a promising alternative (supplement) to the inclusive SM Higgs production for m H ≈ 100 − 140GeV.

  8. [ Higgs + jet in the SM, Higgs + jet ] available codes: • Higgsjet [de Florian, Grazzini, Kunszt ’99] NLO QCD cross section for pp → H + jet also: soft gluon resummation [de Florian, Kulesza, Vogelsang ’05] • HqT [Bozzi, Catani, de Florian, Grazzini ’03 & ’06] p T -distribution for pp → H + X at NLL + LO and NNLL + NLO QCD accuracy (large effects at small p T resummed) • MC@NLO [Frixione, Webber ’02; Frixione, Nason, Webber ’05] contains pp → H + X event generation at NLO QCD accuracy • FEHiP [Anastasiou, Melnikov, Petriello ’05] NNLO QCD differential cross section for pp → H + X

  9. • Higgs + jet in the MSSM

  10. • Higgs + jet in the MSSM [OBr, Hollik ’03; ’07] (full MSSM) , [Field, Dawson, Smith ’04] (MSSM, no superpartners) , [Langenegger et al. ’06] (MSSM with soft-gluon resummation, no superpartners) – differences to the SM Motivation: * promising simulation results in the SM case * process loop-induced → potentially large effects from virtual particles partonic processes similar to the SM: gg → h 0 g , gluon fusion q ) g → h 0 q (¯ quark-gluon scattering q (¯ q ), q → h 0 g q ¯ q annihilation q ¯ but: * different Higgs Yukawa-couplings g SM → g MSSM mq mq e e mW − mW f q ( α,β ) , qH = = q ¯ qh 0 2 sw q ¯ 2 sw f uI ( α,β )=cos α/ sin β f dI ( α,β )= − sin α/ cos β → change of overall rate * additional superpartner-loops (even additional topologies) → also angular distribution changed

  11. [ Higgs + jet in the MSSM ] – Feynman graphs gluon fusion, gg → h 0 g quark loops q i q i q i q i g q i q i q i q i q i q i q i q i q i q i q i q i h 0 h 0 q i q i q i q i q i h 0 h 0 h 0 h 0 superpartner loops q s ˜ i q s ˜ i q s ˜ q s q s q s q s q s q s ˜ ˜ ˜ ˜ ˜ q s ˜ ˜ i h 0 i i i i i i q s i ˜ h 0 h 0 i q s ˜ i h 0 q s h 0 ˜ h 0 q s q s i ˜ ˜ i i q s q s ˜ ˜ q s ˜ i i q s i ˜ i q s q s q s ˜ q s ˜ ˜ ˜ q s q s q s q s q s q s q s i i i ˜ ˜ ˜ ˜ ˜ ˜ i ˜ h 0 h 0 q s i i i i i i i ˜ h 0 i q s ˜ i q s q s ˜ ˜ q s q s h 0 ˜ h 0 h 0 ˜ i i i i

  12. [ Higgs + jet in the MSSM, Feynman graphs ] quark gluon scattering, qg → h 0 q quark loops q i q i q i h 0 superpartner loops q s ˜ g ˜ q s q s q s q t ˜ ˜ ˜ q s ˜ ˜ g ˜ h 0 i i i h 0 q t ˜ q s h 0 ˜ h 0 q s i ˜ i q s ˜ ˜ g g ˜ q s q t q t q s q t ˜ ˜ g ˜ ˜ ˜ ˜ h 0 q t q s ˜ h 0 ˜ g h 0 ˜

  13. [ Higgs + jet in the MSSM, Feynman graphs ] q → h 0 g quark anti-quark annihilation, q ¯ quark loops q i q i q i h 0 superpartner loops u s ˜ u s ˜ i u s ˜ u s u t ˜ ˜ ˜ g u t g ˜ i ˜ h 0 i u s ˜ i u s ˜ i u s h 0 h 0 h 0 ˜ u s u s ˜ ˜ g ˜ u s u s g ˜ ˜ g u t g ˜ ˜ ˜ ˜ h 0 u t h 0 u t h 0 u t ˜ ˜ ˜ b -quark processes: bg scattering, bg → h 0 b , b → h 0 g b ¯ b annihilation, b ¯ b b b b [ partonic processes calculated using FeynArts/FormCalc, see : www.feynarts.de ]

  14. • MSSM results

  15. [ MSSM results ] – total cross section total hadronic cross section @ LHC σ ( pp → h 0 + jet + X ) applying the cuts p T, jet ≥ 30 GeV and | η jet | ≤ 4 . 5

  16. [ MSSM results, total cross section ] m A - and tan β -dependence : high m A SM SM MSSM, full MSSM, full MSSM, no SP MSSM, no SP MSSM, no b MSSM, no b MSSM, no b, no SP MSSM, no b, no SP 10 σ ( pp → h 0 +jet) [pb] σ ( pp → h 0 +jet) [pb] 100 m h -max M SUSY =400 GeV tan β =30 m h -max 10 M SUSY =400 GeV m A =400 GeV 90 100 200 300 400 5 10 15 20 25 30 tan β m A [GeV] ⇑ ⇑

  17. [ MSSM results, total cross section ] m A - and tan β -dependence : low m A SM M SUSY =400 GeV MSSM, full MSSM, no SP MSSM, no b m A =100 GeV MSSM, no b, no SP 100 σ ( pp → h 0 +jet) [pb] σ ( pp → h 0 +jet) [pb] 100 m h -max M SUSY =400 GeV tan β =30 m h -max 10 10 SM MSSM, full MSSM, no SP MSSM, no b MSSM, no b, no SP 90 100 200 300 400 5 10 15 20 25 30 m A [GeV] tan β ⇑ ⇑

  18. [ MSSM results, total cross section ] M SUSY -dependence : 12 8 no-mixing 7 10 σ ( pp → h 0 +jet) [pb] σ ( pp → h 0 +jet) [pb] 6 8 5 large- µ [ Xt = − 900 GeV ,m max 6 4 =124 GeV] h m h -max 3 tan β =6 4 tan β =6 2 m A =200 GeV m A =200 GeV 2 no-mixing 1 no-mixing, no SP mh-max large-mu mh-max, no SP large-mu, no SP 0 0 300 400 500 600 700 800 900 1000 400 500 600 700 800 900 1000 M SUSY [GeV] M SUSY [GeV]

  19. [ MSSM results, total cross section ] relative difference δ = ( σ MSSM − σ SM ) /σ SM ) : δ [%] -32 -30 m h -max scenario, M SUSY =400 GeV -28 -26 -24 -22 50 10 − 26% <δ< − 24% tan β 1 200 400 600 800 1000 m A [GeV]

  20. [ MSSM results ] – differential cross section differential hadronic cross sections @ LHC/Tevatron , d 2 σ ( S,p T, jet ,η jet ) dσ ( S,p T, jet ) , dσ ( S,η jet ) dp T, jet dη jet dp T, jet dη jet

  21. [ MSSM results, differential cross section ] p T, jet - and η jet -dependence, low- m A case Tevatron, m h -max scenario, M SUSY = 400 GeV, m A = 110 GeV, tan β = 30 24 35 22 30 20 25 18 20 16 δ [1] δ [1] 15 14 | η jet | ≤ 4 . 5 10 12 5 10 p T, jet ≥ 30 GeV 0 8 6 -5 0.5 10 − 1 all dσ/dp T [pb / GeV] 0.4 10 − 2 dσ/dη 3 [pb] qg 0.3 10 − 3 0.2 10 − 4 q ¯ q 0.1 10 − 5 gg 0 10 − 6 -4 -3 -2 -1 0 1 2 3 4 100 η 3 thick lines: MSSM p T [GeV] thin lines: SM

  22. [ MSSM results, differential cross section ] p T, jet - and η jet -dependence, low- m A case LHC, m h -max scenario, M SUSY = 400 GeV, m A = 110 GeV, tan β = 30 28 40 26 35 24 30 22 25 20 20 δ [1] δ [1] 18 15 | η jet | ≤ 4 . 5 16 10 14 5 p T, jet ≥ 30 GeV 12 0 10 8 -5 40 10 all 35 1 dσ/dp T [pb / GeV] 30 10 − 1 dσ/dη 3 [pb] 25 qg 10 − 2 20 10 − 3 15 10 − 4 q ¯ q 10 5 10 − 5 gg 0 10 − 6 -4 -3 -2 -1 0 1 2 3 4 100 1000 η 3 thick lines: MSSM p T [GeV] thin lines: SM

  23. [ MSSM results, differential cross section ] p T, jet - and η jet -dependence, high- m A case LHC, m h -max scenario, M SUSY = 400 GeV, m A = 400 GeV, tan β = 30 -25 -20 -22 -26 -24 δ [%] δ [%] -26 -27 p T, jet ≥ 30 GeV | η jet | ≤ 4 . 5 -28 -28 -30 1.2 all 10 − 1 dσ/dp T [pb / GeV] 1 10 − 2 dσ/dη 3 [pb] 0.8 10 − 3 gg 0.6 10 − 4 0.4 qg 10 − 5 0.2 q ¯ q 0 10 − 6 -4 -3 -2 -1 0 1 2 3 4 100 1000 η 3 thick lines: MSSM p T [GeV] thin lines: SM

  24. [ MSSM results, differential cross section ] p T, jet - and η jet -dependence, high- m A case LHC, no-mixing(700) scenario, M SUSY = 700 GeV, m A = 500 GeV, tan β = 35 8 18 16 7 14 12 δ [%] δ [%] 6 10 8 5 6 p T, jet ≥ 30 GeV | η jet | ≤ 4 . 5 4 4 2 1.6 10 − 1 1.4 all dσ/dp T [pb / GeV] 1.2 10 − 2 dσ/dη 3 [pb] 1 gg 10 − 3 0.8 0.6 10 − 4 qg 0.4 10 − 5 0.2 q ¯ q 0 10 − 6 -4 -3 -2 -1 0 1 2 3 4 100 1000 η 3 thick lines: MSSM p T [GeV] thin lines: SM

  25. [ MSSM results, differential cross section ] p T, jet - and η jet -dependence, high- m A case LHC, small- α eff scenario, m A = 400 GeV, tan β = 30 -10 0 -5 -11 -10 δ [%] δ [%] -15 -12 -20 p T, jet ≥ 30 GeV | η jet | ≤ 4 . 5 -25 -13 -30 1.2 all 10 − 1 dσ/dp T [pb / GeV] 1 10 − 2 dσ/dη 3 [pb] 0.8 gg 10 − 3 0.6 10 − 4 0.4 qg 10 − 5 0.2 q ¯ q 0 10 − 6 -4 -3 -2 -1 0 1 2 3 4 100 1000 η 3 thick lines: MSSM p T [GeV] thin lines: SM

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend