distorting general relativity gravity s rainbow and f r
play

Distorting General Relativity: Gravitys Rainbow and f(R) gravity at - PowerPoint PPT Presentation

FFP14 Marseille 18 -7-2014 Distorting General Relativity: Gravitys Rainbow and f(R) gravity at work Remo Garattini Universit di Bergamo I.N.F.N. - Sezione di Milano Introduction Hamiltonian Formulation of General Relativity and


  1. FFP14 Marseille 18 -7-2014 Distorting General Relativity: Gravity’s Rainbow and f(R) gravity at work Remo Garattini Università di Bergamo I.N.F.N. - Sezione di Milano

  2. Introduction • Hamiltonian Formulation of General Relativity and the Wheeler-DeWitt Equation • The Cosmological Constant as a Zero Point Energy Computation • Gravity’s Rainbow as a tool for computing ZPE • Gravity’s Rainbow and f(R) theory at work

  3. Part I: Hamiltonian Formulation of General Relativity and the Wheeler-DeWitt Equation

  4. Relevant Action for Quantum Cosmology ( ) 1 ( ) ∫ ∫ = − − Λ + + κ = π 4 4 3 3 2 2 8 S d x g R d x g K S G κ matter 2 ∂ M M → Newton's Constant G Λ → Cosmological Constant

  5. Relevant Action for Quantum Cosmology ( ) 1 1 ( ) ∫ ∫ = − − Λ + + 3 4 4 3 2 S d x g R d x g K S κ κ ∂ matter 2 M M ADM Decomposition   j 1 N −     − + 2 k N N N N 2 2 N N   µν =  k j  = g g  ( )  µν   3 i i j N g N N N   ( ) − 3 ij   i ij g   2 2 N N ( )( ) µ ν = = − + + + 2 2 2 i i j j ds g dx dx N dt g N dt dx N dt dx µν ij is the lapse function is the shift function N N i 1 = − + ∇ + ∇ =  ij K g N N K K g ij ij i j j i ij 2 N

  6.   j 1 N −     − + 2 k N N N N 2 2 N N   µν µ ν =  k j  = = 2 ds g g g dx dx  ( )  µν µν   3 i i j N g N N N   ( ) − 3 ij   i ij g   2 2 N N ( ) ( ) 1 ∫ = − + − Λ + + 3 3 2 3 ij 2 S dtd xN g K K K R S S ( ) ∂ Σ× κ ij matter I 2 Σ× I ( ) ∫ → = + + 3 i Legendre Transformation H d x N H N H H ∂Σ i Σ ( ) g ( ) = κ π π − − Λ = → 3 ij kl 2 2 0 Classical Constraint Invariance by time H G R κ ijkl 2 reparametrization = π = → i ij 2 0 Classical Constraint Gauss Law H | j

  7. Wheeler-De Witt Equation B. S. DeWitt, Phys. Rev. 160 , 1113 (1967).   g ( ) ( )   κ π π − − Λ Ψ =  ij kl  2 2 0 G R g   κ ijkl ij   2   G ijkl is the super-metric, • R is the scalar curvature in 3-dim. • Example:WDW for Tunneling   ∂ ∂ π Λ ( )   2 2 9 q = − + Ω [ ] [ ] 2 2 2 2 2 Ψ = − − + − Ψ = 2 4 ds N dt a t d    0 H a a a a ∂ ∂ 3 2 2    4 3  a a a G Formal Schrödinger Equation with zero eigenvalue whose solution is a linear combination of Airy’s functions (q=-1 Vilenkin Phys. Rev. D 37, 888 (1988).) containing expanding solutions

  8. Wheeler-De Witt Equation B. S. DeWitt, Phys. Rev. 160 , 1113 (1967).   ∂ ∂ π Λ     2 1 9 [ ] [ ] Ψ = − + − Ψ = 2 4 q      0 H a a a a a ∂ ∂ q   2    4 3  a a a G Sturm-Liouville Eigenvalue Problem     + d d ( ) ( ) ( ) ( ) + λ =   0  p x q x w x  y x     dx dx ∞ b ( ) ( ) ( ) ( ) ( ) ( ) ∫ ∫ + → Ψ Ψ ↔ 4 * q * Normalization with weight a a a da w x y x y x dx w x 0 a 2 2 π π Λ       3 3 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) + + → → − → → Ψ λ → 2 4 q q q       p x a t q x a t w x a t y x a       2 2 3 G G

  9. Wheeler-De Witt Equation B. S. DeWitt, Phys. Rev. 160 , 1113 (1967).   ∂ ∂ π Λ     2 1 9 [ ] [ ] Ψ = − + − Ψ = 2 4 q      0 H a a a a a ∂ ∂ q   2    4 3  a a a G Sturm-Liouville Eigenvalue Problem  Variational procedure   b   d d ( ) ( ) ( ) ( ) ( ) ∫ − + *   *  y x p x q x y x y x  dx Rayleigh-Ritz     dx dx λ = → a min Variational Procedure ( ) b y x ( ) ( ) ( ) ∫ * w x y x y x dx a ( ) ( ) = = 0 y a y b

  10. Part II: The Cosmological Constant as a Zero Point Energy Computation

  11. Wheeler-De Witt Equation B. S. DeWitt, Phys. Rev. 160 , 1113 (1967). Reconsider the WDW Equation as an Eigenvalue Problem Λ can be seen as an eigenvalue • Ψ [g ij ] can be considered as an eigenfunction • Define  ( ) g g ( ) Λ = ˆ κ π π − Λ = − Λ ij kl 2 G R x Σ κ κ ijkl C 2   ( ) ∫ ∫             ∗ ∗ Ψ Λ Ψ Ψ Ψ = Λ D g g g D g g g           x   Σ ij ij ij ij ij ij

  12. Wheeler-De Witt Equation B. S. DeWitt, Phys. Rev. 160 , 1113 (1967). [ ] [ ] [ ]  ∫ ∫ ∗ µ Ψ Λ Ψ 3 Induced D h h d x h Σ Λ Cosmological 1 Σ = − ‘‘Constant’’ [ ] [ ] [ ] ∫ κ ∗ µ Ψ Ψ V D h h h [ ] [ ]  ⊥    µ = ξ T D h D h D D h J     ij j Solve this infinite dimensional PDE with a Variational Approach Ψ is a trial wave functional of the gaussian type Schrödinger Picture Spectrum of Λ depending on the metric Energy (Density) Levels

  13. Canonical Decomposition M. Berger and D. Ebin, J. Diff. Geom .3 , 379 (1969). J. W. York Jr., J. Math. Phys., 14 , 4 (1973); Ann. Inst. Henri Poincaré A 21 , 319 (1974). →  g g +h ij ij ij    1 1 ( ) ⊥ → ⇔ = + ξ + ⇔ ∇ − = =  i ij   0 N N h hg L h h g h g h ij ij ij  ij ij  ij ij 3 3  →  0 N i µ µ ν = = ∇ = 0 Equivalent in 4D to 0 No Ghosts Contribution h h h µ µ µ [ ] [ ] [ ]  ∫ ∫ ∗ µ Ψ Λ Ψ 3 D h h d x h Σ Λ 1 Σ = − h is the trace (spin 0) • [ ] [ ] [ ] ∫ κ µ Ψ ∗ Ψ V D h h h (L ξ) ij is the gauge part • [ ] [ ] [ spin 1 (transverse) + spin 0 (long.)] .     µ = ⊥ ξ T D h D h D D h J     ij j F.P determinant (ghosts) h ⊥ ij transverse-traceless  graviton (spin 2) •

  14. Gravity’s Rainbow Doubly Special Relativity G. Amelino-Camelia, Int.J.Mod.Phys. D 11, 35 (2002); gr-qc/001205. G. Amelino-Camelia, Phys.Lett. B 510, 255 (2001); hep-th/0012238. ( ) ( ) − = 2 2 2 2 2 / / E g E E p g E E m 1 2 P P ( ) ( ) = = lim / lim / 1 g E E g E E 1 2 P P → → / 0 / 0 E E E E P P Curved Space Proposal  Gravity’s Rainbow [J. Magueijo and L. Smolin, Class. Quant. Grav. 21, 1725 (2004) arXiv:gr-qc/0305055]. ( ) 2 2 2 2 N r dt dr r r = − + + θ + θ ϕ 2 2 2 2 sin ds d d ( ) ( ) ( ) ( )   2 2 2 / b r / / g E E g E E g E E ( ) 1 − 2 2 2 P   P P 1 / g E E   2 P r   ( ) ( ) ( ) ( ) = − Φ Φ exp 2 is the redshift function N r r r ( ) ( ) ) → = ∈ +∞  is the shape function Condition , b r b r r r  r 0 0 0

  15. Eliminating Divergences using Gravity’s Rainbow [R.G. and G.Mandanici, Phys. Rev. D 83, 084021 (2011), arXiv:1102.3803 [gr-qc]] ( ) ∆ = ∆ − + a 4 h R h Rh ( ) 2 E 2 ia j ij    ∆   ij ⊥ ⊥ = h h ( ) 2 Modified Lichnerowicz operator ij 2 g E ij ( ) 2 ∆ = ∆ − + + jl a a 2 h h R h R h R h     ij ijkl ia j ja i ij Standard Lichnerowicz operator ( ) ( ) ( )     ( 3 2 g E g E 1 − ⊥ ⊥ ( ) ( ) )    ∫ 1, ⊥ Λ = ˆ κ + ∆ 2 3 1 ijkl   2 , , d x g G K x x K x x ( ) ( ) 2 Σ κ 3 Σ   ijkl 4 2 V g E g E   ijkl 2 2    ( )  ( )  ( ) ( ) τ ⊥ τ ⊥ h x h y     ( ) = ∑ , : ij kl (Propagator) K x y ( ) ( ) λ τ 4 2 g E ijkl τ 2

  16. Eliminating Divergences using Gravity’s Rainbow [R.G. and G.Mandanici, Phys. Rev. D 83, 084021 (2011), arXiv:1102.3803 [gr-qc]] ( ) ( ) ( ) We can define an r-dependent radial wave number    3 ' 3 6 1 b r b r b r ( ) ( ) = − + − + 2    2 1 l l m r E ( ) ( ) ( ) = − − ≡ 2 2 1 , , nl 2 2 3 k r l E m r r r x    2 2 ( ) r r r r nl i 2 2 / g E E r  2 P ( ) ( ) ( )    ' 3 6 1 b r b r b r ( ) = − + + 2   m r  2 2 2 3 2 2    r r r r 3 +∞   Λ 2 2 1 E ∑ ∫ d = − − 2   ( / ) ( / ) i ( ) E g E E g E E m r dE π π 1 2 i P P i i 2 2 8 3  ( / )  G dE g E E = 1 i 2 * i P E Λ ω 2 1 +∞ ∫ = − ω i d π π ( ) Standard Regularization 2 1 i 2 ( ) 8 16 G ε − m r ( ) i ω − 2 2 2 m r i i

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend