discontinuous solutions for the degasperis procesi
play

Discontinuous Solutions for the Degasperis-Procesi Equation. - PDF document

Discontinuous Solutions for the Degasperis-Procesi Equation. Giuseppe Maria Coclite Department of Mathematics University of Bari Via Orabona 4, 70125 Bari, Italy e-mail : coclitegm@dm.uniba.it joint work with Professor K. H. Karlsen


  1. Discontinuous Solutions for the Degasperis-Procesi Equation. Giuseppe Maria Coclite Department of Mathematics University of Bari Via Orabona 4, 70125 Bari, Italy e-mail : coclitegm@dm.uniba.it joint work with Professor K. H. Karlsen (University of Oslo and C.M.A. - Oslo, Norway) 0

  2. Consider the equation ∂ 3 u ∂ 2 u ∂x 2 + u∂ 3 u ∂u ∂t∂x 2 + 4 u∂u ∂x = 3 ∂u ∂t − ( DP ) ∂x 3 , ∂x where t ≥ 0 , x ∈ I u ( t, x ) ∈ I R, R. (DP) is termed Degasperis - Procesi Equation. Deduction. Degasperis and Procesi in 1999 studied the following family of third order dispersive nonlinear equations , indexed over six constants c 0 , γ, α, c 1 , c 2 , c 3 ∈ I R : � � � ∂u � 2 ∂x + γ ∂ 3 u ∂x 3 − α 2 ∂ 3 u + c 3 u∂ 2 u ∂u ∂u ∂t∂x 2 = ∂ c 1 u 2 + c 2 ∂t + c 0 . ∂x 2 ∂x ∂x Using the method of asymptotic integrability , they found that only three equations from this family were asymptotically integrable up to third order : • the KdV equation : α = c 2 = c 3 = 0; • the Camassa-Holm equation : c 1 = − 3 c 3 2 α 2 , c 2 = c 3 2 ; • one new equation : c 1 = − 2 c 3 α 2 , c 2 = c 3 (after a proper scaling) � ∂ 3 u � ∂x + ∂ 3 u ∂ 2 u 2 u∂ 3 u ∂u ∂t + ∂u ∂x +6 u∂u ∂t∂x 2 + 9 ∂u ∂x 2 + 3 ∂x 3 − α 2 = 0 . ∂x 3 2 ∂x 1

  3. After • rescaling • shifting the dependent variable • applying a Galilean boost the three equations read • the KdV equation : ∂x + ∂ 3 u ∂u ∂t + u∂u ∂x 3 = 0 ( KdV ) • the Camassa-Holm equation : ∂ 3 u ∂x 2 + u∂ 3 u ∂ 2 u ∂u ∂t∂x 2 + 3 u∂u ∂x = 2 ∂u ∂t − ( CH ) ∂x 3 ∂x • the Degasperis - Procesi equation : ∂ 3 u ∂ 2 u ∂x 2 + u∂ 3 u ∂u ∂t∂x 2 + 4 u∂u ∂x = 3 ∂u ∂t − ( DP ) ∂x 3 ∂x Physics: Shallow Water Waves. ⇒ depth of the water Shallow Water Waves ⇐ < 1 < length of the wave • Unidirectional shallow water waves • u ≡ wave height (KdV) / velocity (CH - DP) above the bottom • Flat bottom 2

  4. Essential Literature. Degasperis - Holm - Khon (2002): • exact integrability (by constructing a Lax pair) • bi-Hamiltonian structure • two infinite sequences of conserved quantities • “non-smooth” solutions: superpositions of multipeakons • some special explicit solution Lundmark - Szmigielski (2003): • n-peakon solutions (via inverse scattering) Mustafa (2005): • smooth solutions have infinite speed of propagation Yin (2003-2003-2004-2004): • Cauchy Problem: local and global well-posedness u 0 ∈ H r ( S 1 ) , r > 3 u 0 ∈ H s ( I R ) , s ≥ 3 or 2 � � u 0 − ∂ 2 u 0 sign constant ∂x 2 Remark. The signum of the vorticity u − ∂ 2 u ∂x 2 is conserved � � � � u 0 − ∂ 2 u 0 u ( t, · ) − ∂ 2 u ⇒ sign ∂x 2 ( t, · ) sign > 0 = > 0 ∂x 2 3

  5. Conservation Law Approach. This third order equation ∂ 3 u ∂ 2 u ∂x 2 + u∂ 3 u ∂u ∂t∂x 2 + 4 u∂u ∂x = 3 ∂u ∂t − ∂x 3 , ( DP ) ∂x is formally equivalent to the elliptic - hyperbolic system  ∂u ∂t + u∂u ∂x + ∂P   ∂x = 0 ,  − ∂ 2 P  ∂x 2 + P = 3   2 u 2 , to the integro - differential system  ∂u ∂t + u∂u ∂x + ∂P   ∂x = 0 ,  � P ( t, x ) = 3   e −| x − y | u 2 ( t, y ) dy,  4 I R and, finally, to the integro - differential equation � ∂x + 3 ∂u ∂t + u∂u e −| x − y | sign( y − x ) u 2 ( t, y ) dy = 0 . 4 I R 4

  6. Comparison with the Camssa - Holm Equation. Degasperis - Procesi Equation. ∂ 3 u ∂ 2 u ∂x 2 + u∂ 3 u ∂u ∂t∂x 2 + 4 u∂u ∂x = 3 ∂u ∂t − ( DP ) ∂x 3 ∂x �  ∂u ∂t + u∂u ∂x + ∂P   ∂x = 0  ( wDP )  − ∂ 2 P ∂x 2 + P = 3   2 u 2 � � Functional setting L ∞ R + ; L 2 loc ( I R ) : discontinuous solutions. I loc Camassa - Holm Equation. ∂ 3 u ∂ 2 u ∂x 2 + u∂ 3 u ∂u ∂t∂x 2 + 3 u∂u ∂x = 2 ∂u ∂t − ( CH ) ∂x 3 ∂x �  ∂u ∂t + u∂u ∂x + ∂P  ∂x = 0   ( wCH ) � ∂u � 2 − ∂ 2 P  ∂x 2 + P = 1   + u 2 2 ∂x � � Functional setting L ∞ R + ; H 1 I loc ( I R ) : continuous solutions. loc 5

  7. Definitions of Solutions. Weak Solutions. We call u : I R + × I R → I R weak solution of the Cauchy problem  ∂ 3 u ∂x 2 + u∂ 3 u ∂ 2 u ∂u ∂t∂x 2 + 4 u∂u ∂x = 3 ∂u   ∂t − ∂x 3 , ∂x ( CP )   u (0 , x ) = u 0 ( x ) , if and only if i ) u ∈ L ∞ � � R + ; L 2 ( I I R ) ; ii ) u satisfies  ∂u ∂t + u∂u ∂x + ∂P   ∂x = 0 ,     − ∂ 2 P ∂x 2 + P = 3 ( wCP ) 2 u 2 ,       u (0 , x ) = u 0 ( x ) , in the sense of distributions. 6

  8. entropy weak solutions. R + × I R → I We call u : I R entropy weak solution of the Cauchy problem  ∂ 3 u ∂x 2 + u∂ 3 u ∂ 2 u  ∂u ∂t∂x 2 + 4 u∂u ∂x = 3 ∂u  ∂t − ∂x 3 , ∂x ( CP )   u (0 , x ) = u 0 ( x ) , if and only if i ) u ∈ L ∞ � � ∩ L ∞ � � R + ; L 2 ( I [0 , T ]; BV ( I R ) I R ) , T > 0; ii ) u satisfies  ∂u ∂t + u∂u ∂x + ∂P   ∂x = 0 ,     − ∂ 2 P ∂x 2 + P = 3 ( wCP ) 2 u 2 ,       u (0 , x ) = u 0 ( x ) , in the sense of distributions; iii ) for any convex C 2 entropy η : I R → I R with corresponding R defined by q ′ ( u ) = η ′ ( u ) u there holds R → I entropy flux q : I ∂η ( u ) + ∂q ( u ) + η ′ ( u ) ∂P ∂x ≤ 0 , ∂t ∂x in the sense of distributions on I R + × I R. Remark. u entropy weak solution = ⇒ u weak solution . 7

  9. Theorem. (G.M.C. - K. H. Karlsen (JFA - 2006)) • (Existence) If u 0 ∈ L 1 ( I R ) ∩ BV ( I R ) , then there exists an entropy weak solution to the Cauchy prob- lem (CP). • (Stability and uniqueness) Fix any T > 0 , and let u, v be two entropy weak solutions to (CP) with initial data u 0 , v 0 ∈ L 1 ( I R ) ∩ BV ( I R ) , respectively. Then for any t ∈ (0 , T ) R ) ≤ e M T t � u 0 − v 0 � L 1 ( I � u ( t, · ) − v ( t, · ) � L 1 ( I R ) , � � M T := 3 � u � L ∞ ((0 ,T ) × I R ) + � v � L ∞ ((0 ,T ) × I < ∞ . R ) 2 In particular, there exists at most one entropy weak solution to (CP). • (Time L 1 -continuity) For any T > 0 : � u ( t 2 , · ) − u ( t 1 , · ) � L 1 ( I R ) ≤ C T | t 2 − t 1 | , ∀ t 1 , t 2 ∈ [0 , T ] , � � 2 R ) + 12 T � u 0 � 2 + 12 � u 0 � 2 � u 0 � L 1 ( I C T := R ) . L 2 ( I R ) L 2 ( I • (Oleinik type estimate) For a.e. ( t, x ) ∈ (0 , T ] × I R , ∂u ∂x ( t, x ) ≤ 1 t + K T , � � 2 � 1 / 2 � R ) + 3 6 � u 0 � 2 TV ( u 0 ) + 24 T � u 0 � 2 K T := . L 2 ( I L 2 ( I R ) 2 8

  10. Vanishing Viscosity Approximation. We approximate (wCP) with the following elliptic - parabolic system  ∂x = ε∂ 2 u ε ∂u ε ∂u ε ∂x + ∂P ε   ∂t + u ε ∂x 2 ,     − ∂ 2 P ε ∂x 2 + P ε = 3 2 u 2 ε ,       u ε (0 , x ) = u ε, 0 ( x ) , that is equivalent to the fourth order problem  ∂t − ∂ 3 u ε ∂u ε ∂u ε   ∂t∂x 2 + 3 u ε   ∂x   ∂ 2 u ε ∂x 2 + u∂ 3 u ε ∂x 3 + ε∂ 2 u ε ∂x 2 − ε∂ 4 u ε = 3 ∂u ε ∂x 4 ,    ∂x    u ε (0 , x ) = u ε, 0 ( x ) . • Existence and Uniqueness of smooth solutions if u ε, 0 ∈ H 2 ( I R ). • Lipschitz continuity with respect to the viscosity coefficient ε and the initial condition u ε, 0 . • The Lipschitz constant depends on ε . (see G.M.C. - H. Holden - K. H. Karlsen (DCDS - 2005)) 9

  11. L 2 - estimate. � ε ( t, y ) dy = ε∂ 2 u ε ∂x + 3 ∂u ε ∂u ε e −| x − y | sign( y − x ) u 2 ∂t + u ε ∂x 2 4 I R Viscous Burgers equation with a nonlocal source. Estimate on the nonlocal term: L 2 bound on u ε . • multiplying by u ε and integrating on I R is not working. • Hamiltonian structure: conserved quantities for (DP). Let v = v ( t, x ) be defined by the equation − ∂ 2 v ∂x 2 + 4 v = u � � � u − ∂ 2 u is a conserved quantity for (DP) v dx ∂x 2 I R Observe that � � � � � � − 1 � � u − ∂ 2 u 4 − ∂ 2 1 − ∂ 2 v dx = u u dx = ∂x 2 ∂x 2 ∂x 2 I R I R � � � ∂v � 2 � ∂ 2 v � 2 � 4 v 2 + 5 = + dx ∂x 2 ∂x I R ≃ � v � 2 R ) ≃ � u � 2 H 2 ( I L 2 ( I R ) 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend