different flavors
play

Different Flavors Hoang Dau University of Illinois at - PowerPoint PPT Presentation

Coding with Constraints: Different Flavors Hoang Dau University of Illinois at Urbana-Champaign 1 Email: hoangdau@uiuc.edu DIMACS Workshop on Network Coding: the Next 15 Years Rutgers University, NJ, 2015 Part I Coding with Constraints: A


  1. Coding with Constraints: Different Flavors Hoang Dau University of Illinois at Urbana-Champaign 1 Email: hoangdau@uiuc.edu DIMACS Workshop on Network Coding: the Next 15 Years Rutgers University, NJ, 2015

  2. Part I Coding with Constraints: A Quick Survey

  3. Coding with Constraints: Definition 𝑑 1 𝑑 2 𝑦 1 𝑦 2 π‘œ coded 𝑙 data ENCODED symbols symbols 𝑦 𝑙 𝑑 π‘œ CONVENTIONAL CODE 𝑑 π‘˜ = 𝑑 π‘˜ (𝑦 1 , 𝑦 2 , … , 𝑦 𝑙 ) 3

  4. Coding with Constraints: Definition 𝑑 1 𝑑 2 𝑦 1 𝑦 2 π‘œ coded 𝑙 data ENCODED symbols symbols 𝑦 𝑙 𝑑 π‘œ CODE WITH CONSTRAINTS CONVENTIONAL CODE 𝑑 π‘˜ = 𝑑 π‘˜ ({𝑦 𝑗 : 𝑗 ∈ 𝐷 π‘˜ }) , 𝐷 π‘˜ βŠ† {1,2, … , 𝑙} 𝑑 π‘˜ = 𝑑 π‘˜ (𝑦 1 , 𝑦 2 , … , 𝑦 𝑙 ) 4

  5. Coding with Constraints: Example = 𝑑 1 (𝑦 1 , 𝑦 2 ) 𝑑 1 𝑦 1 = 𝑑 2 (𝑦 1 , 𝑦 3 ) 𝑑 2 𝑦 2 𝑑 3 = 𝑑 3 (𝑦 2 ) 𝑦 3 𝑑 4 = 𝑑 4 (𝑦 2 , 𝑦 3 ) 𝑑 5 = 𝑑 5 (𝑦 1 , 𝑦 3 ) 5

  6. Coding with Constraints: Example = 𝑑 1 (𝑦 1 , 𝑦 2 ) 𝑑 1 𝑦 1 = 𝑑 2 (𝑦 1 , 𝑦 3 ) 𝑑 2 𝑦 2 𝑑 3 = 𝑑 3 (𝑦 2 ) 𝑦 3 𝑑 4 = 𝑑 4 (𝑦 2 , 𝑦 3 ) 𝑑 5 = 𝑑 5 (𝑦 1 , 𝑦 3 ) Linear code: 𝑑 1 , 𝑑 2 , 𝑑 3 , 𝑑 4 , 𝑑 5 = 𝑦 1 , 𝑦 2 , 𝑦 3 𝑯 where the generator matrix 𝑯 is ? ? 0 0 ? 𝑯 = ? 0 ? ? 0 0 ? 0 ? ? 6

  7. Coding with Constraints: Main Problem Given the constraints 𝑑 π‘˜ = 𝑑 π‘˜ ({𝑦 𝑗 : 𝑗 ∈ 𝐷 π‘˜ }) , 𝐷 π‘˜ βŠ† {1,2, … , 𝑙} how to construct codes that – achieve the optimal minimum distance – over small field size π‘Ÿ β‰ˆ poly π‘œ

  8. Coding with Constraints: Main Problem Given the constraints 𝑑 π‘˜ = 𝑑 π‘˜ ({𝑦 𝑗 : 𝑗 ∈ 𝐷 π‘˜ }) , 𝐷 π‘˜ βŠ† {1,2, … , 𝑙} how to construct codes that – achieve the optimal minimum distance – over small field size π‘Ÿ β‰ˆ poly π‘œ Linear case: given ? ? 0 0 ? 𝑯 = ? 0 ? ? 0 0 ? 0 ? ? how to replace β€œ?” -entries by elements of 𝐺 π‘Ÿ ( π‘Ÿ β‰ˆ poly(π‘œ) ) so that 𝑯 generate a code with optimal distance

  9. Coding with Constraints: Upper Bound Upper Bound (Halbawi-Thill- Hassibi’15, Song -Dau- Yuen’15) 𝑒 ≀ 𝑒 𝑛𝑏𝑦 = 1 + βˆ…β‰ π½βŠ† 1,…,𝑙 ( βˆͺ π‘—βˆˆπ½ 𝑆 𝑗 βˆ’ |𝐽|) min where 𝑆 𝑗 = {π‘˜: 𝑗 ∈ 𝐷 π‘˜ }

  10. Coding with Constraints: Upper Bound Upper Bound (Halbawi-Thill- Hassibi’15, Song -Dau- Yuen’15) 𝑒 ≀ 𝑒 𝑛𝑏𝑦 = 1 + βˆ…β‰ π½βŠ† 1,…,𝑙 ( βˆͺ π‘—βˆˆπ½ 𝑆 𝑗 βˆ’ |𝐽|) min where 𝑆 𝑗 = {π‘˜: 𝑗 ∈ 𝐷 π‘˜ } Properties – 𝑒 𝑛𝑏𝑦 can be found in time poly(π‘œ) π‘œ – codes with 𝑒 = 𝑒 𝑛𝑏𝑦 always exists over fields of size β‰ˆ 𝑒 βˆ’ 1

  11. Coding with Constraints: Upper Bound Upper Bound (Halbawi-Thill- Hassibi’15, Song -Dau- Yuen’15) 𝑒 ≀ 𝑒 𝑛𝑏𝑦 = 1 + βˆ…β‰ π½βŠ† 1,…,𝑙 ( βˆͺ π‘—βˆˆπ½ 𝑆 𝑗 βˆ’ |𝐽|) min where 𝑆 𝑗 = {π‘˜: 𝑗 ∈ 𝐷 π‘˜ } Properties – 𝑒 𝑛𝑏𝑦 can be found in time poly(π‘œ) π‘œ – codes with 𝑒 = 𝑒 𝑛𝑏𝑦 always exists over fields of size β‰ˆ 𝑒 βˆ’ 1 Question of interest: how about fields of size poly(π‘œ) ?

  12. Coding with Constraints: Review (Small field) MDS Case: 𝑒 𝑛𝑏𝑦 = π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist in a few special cases (Halbawi-Ho-Yao- Duursma ’14, Dau-Song-Yuen ’14 , Yan-Sprintson- Zelenko’ 14)

  13. Coding with Constraints: Review (Small field) MDS Case: 𝑒 𝑛𝑏𝑦 = π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist in a few special cases (Halbawi-Ho-Yao- Duursma ’14, Dau-Song-Yuen ’14 , Yan-Sprintson- Zelenko’ 14) β€’ 𝑙 ≀ 4 (every π‘œ )

  14. Coding with Constraints: Review (Small field) MDS Case: 𝑒 𝑛𝑏𝑦 = π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist in a few special cases (Halbawi-Ho-Yao- Duursma ’14, Dau-Song-Yuen ’14 , Yan-Sprintson- Zelenko’ 14) β€’ 𝑙 ≀ 4 (every π‘œ ) β€’ rows of 𝑯 partitioned into ≀ 3 groups, each has same β€œ?” -pattern

  15. Coding with Constraints: Review (Small field) MDS Case: 𝑒 𝑛𝑏𝑦 = π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist in a few special cases (Halbawi-Ho-Yao- Duursma ’14, Dau-Song-Yuen ’14 , Yan-Sprintson- Zelenko’ 14) β€’ 𝑙 ≀ 4 (every π‘œ ) β€’ rows of 𝑯 partitioned into ≀ 3 groups, each has same β€œ?” -pattern β€’ rows have 𝑙 βˆ’ 1 zeros & 2 different rows share ≀ 1 common zeros

  16. Coding with Constraints: Review (Small field) MDS Case: 𝑒 𝑛𝑏𝑦 = π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist in a few special cases (Halbawi-Ho-Yao- Duursma ’14, Dau-Song-Yuen ’14 , Yan-Sprintson- Zelenko’ 14) β€’ 𝑙 ≀ 4 (every π‘œ ) β€’ rows of 𝑯 partitioned into ≀ 3 groups, each has same β€œ?” -pattern β€’ rows have 𝑙 βˆ’ 1 zeros & 2 different rows share ≀ 1 common zeros General Case (Halbawi-Thill- Hassibi’15 ): 𝑒 𝑛𝑏𝑦 ≀ π‘œ βˆ’ 𝑙 + 1

  17. Coding with Constraints: Review (Small field) MDS Case: 𝑒 𝑛𝑏𝑦 = π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist in a few special cases (Halbawi-Ho-Yao- Duursma ’14, Dau-Song-Yuen ’14 , Yan-Sprintson- Zelenko’ 14) β€’ 𝑙 ≀ 4 (every π‘œ ) β€’ rows of 𝑯 partitioned into ≀ 3 groups, each has same β€œ?” -pattern β€’ rows have 𝑙 βˆ’ 1 zeros & 2 different rows share ≀ 1 common zeros General Case (Halbawi-Thill- Hassibi’15 ): 𝑒 𝑛𝑏𝑦 ≀ π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist if there are β‰₯ 𝑒 𝑛𝑏𝑦 βˆ’ 1 indices π‘˜ ’s where 𝐷 π‘˜ = 𝑙

  18. Coding with Constraints: Review (Small field) MDS Case: 𝑒 𝑛𝑏𝑦 = π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist in a few special cases (Halbawi-Ho-Yao- Duursma ’14, Dau-Song-Yuen ’14 , Yan-Sprintson- Zelenko’ 14) β€’ 𝑙 ≀ 4 (every π‘œ ) β€’ rows of 𝑯 partitioned into ≀ 3 groups, each has same β€œ?” -pattern β€’ rows have 𝑙 βˆ’ 1 zeros & 2 different rows share ≀ 1 common zeros General Case (Halbawi-Thill- Hassibi’15 ): 𝑒 𝑛𝑏𝑦 ≀ π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist if there are β‰₯ 𝑒 𝑛𝑏𝑦 βˆ’ 1 indices π‘˜ ’s where 𝐷 π‘˜ = 𝑙 – Optimal systematic codes always exists (smaller bound 𝑒 𝑑𝑧𝑑 ≀ 𝑒 𝑛𝑏𝑦 )

  19. Coding with Constraints: Review (Small field) MDS Case: 𝑒 𝑛𝑏𝑦 = π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist in a few special cases (Halbawi-Ho-Yao- Duursma ’14, Dau-Song-Yuen ’14 , Yan-Sprintson- Zelenko’ 14) β€’ 𝑙 ≀ 4 (every π‘œ ) β€’ rows of 𝑯 partitioned into ≀ 3 groups, each has same β€œ?” -pattern β€’ rows have 𝑙 βˆ’ 1 zeros & 2 different rows share ≀ 1 common zeros General Case (Halbawi-Thill- Hassibi’15 ): 𝑒 𝑛𝑏𝑦 ≀ π‘œ βˆ’ 𝑙 + 1 – Optimal codes exist if there are β‰₯ 𝑒 𝑛𝑏𝑦 βˆ’ 1 indices π‘˜ ’s where 𝐷 π‘˜ = 𝑙 – Optimal systematic codes always exists (smaller bound 𝑒 𝑑𝑧𝑑 ≀ 𝑒 𝑛𝑏𝑦 ) Common Technique: Reed-Solomon (sub-) code

  20. Coding with Constraints: Review Common Technique: Reed-Solomon (sub-) code = 𝑑 1 (𝑦 1 , 𝑦 2 ) 𝑑 1 𝑦 1 = 𝑑 2 (𝑦 1 , 𝑦 3 ) 𝑑 2 𝑦 2 𝑑 3 = 𝑑 3 (𝑦 2 ) 𝑦 3 𝑑 4 = 𝑑 4 (𝑦 2 , 𝑦 3 ) 𝑑 5 = 𝑑 5 (𝑦 1 , 𝑦 3 ) ? ? 0 0 ? 𝑯 = ? 0 ? ? 0 0 ? 0 ? ?

  21. Coding with Constraints: Review Common Technique: Reed-Solomon (sub-) code = 𝑑 1 (𝑦 1 , 𝑦 2 ) 𝑑 1 𝑦 1 = 𝑑 2 (𝑦 1 , 𝑦 3 ) 𝑑 2 𝑦 2 𝑑 3 = 𝑑 3 (𝑦 2 ) 𝑦 3 𝑑 4 = 𝑑 4 (𝑦 2 , 𝑦 3 ) 𝑑 5 = 𝑑 5 (𝑦 1 , 𝑦 3 ) 𝛽 1 𝛽 2 𝛽 3 𝛽 4 𝛽 5 ? ? 0 0 ? 𝑯 = ? 0 ? ? 0 0 ? 0 ? ?

  22. Coding with Constraints: Review Common Technique: Reed-Solomon (sub-) code = 𝑑 1 (𝑦 1 , 𝑦 2 ) 𝑑 1 𝑦 1 = 𝑑 2 (𝑦 1 , 𝑦 3 ) 𝑑 2 𝑦 2 𝑑 3 = 𝑑 3 (𝑦 2 ) 𝑦 3 𝑑 4 = 𝑑 4 (𝑦 2 , 𝑦 3 ) 𝑑 5 = 𝑑 5 (𝑦 1 , 𝑦 3 ) 𝛽 1 𝛽 2 𝛽 3 𝛽 4 𝛽 5 𝑔 1 (𝛽 1 ) 𝑔 1 (𝛽 2 ) 0 0 𝑔 1 (𝛽 5 ) ? ? 0 0 ? 𝑔 2 (𝛽 1 ) 0 𝑔 2 (𝛽 3 ) 𝑔 2 (𝛽 4 ) 0 𝑯 = = ? 0 ? ? 0 0 ? 0 ? ? 0 𝑔 3 (𝛽 2 ) 0 𝑔 3 (𝛽 4 ) 𝑔 3 (𝛽 5 )

  23. Coding with Constraints: Review Common Technique: Reed-Solomon (sub-) code = 𝑑 1 (𝑦 1 , 𝑦 2 ) 𝑑 1 𝑦 1 = 𝑑 2 (𝑦 1 , 𝑦 3 ) 𝑑 2 𝑦 2 𝑑 3 = 𝑑 3 (𝑦 2 ) 𝑦 3 𝑑 4 = 𝑑 4 (𝑦 2 , 𝑦 3 ) 𝑑 5 = 𝑑 5 (𝑦 1 , 𝑦 3 ) 𝛽 1 𝛽 2 𝛽 3 𝛽 4 𝛽 5 𝑔 1 (𝛽 1 ) 𝑔 1 (𝛽 2 ) 0 0 𝑔 1 (𝛽 5 ) ? ? 0 0 ? 𝑔 2 (𝛽 1 ) 0 𝑔 2 (𝛽 3 ) 𝑔 2 (𝛽 4 ) 0 𝑯 = = ? 0 ? ? 0 0 ? 0 ? ? 0 𝑔 3 (𝛽 2 ) 0 𝑔 3 (𝛽 4 ) 𝑔 3 (𝛽 5 ) Difficulty: G may not be full rank

  24. Part II: Joint Design of Different MDS Codes (joint work with H. Kiah, W. Song, and C. Yuen)

  25. MDS Codes for Distributed Storage 𝑑 1 MDS: tolerate any π‘œ βˆ’ 𝑙 node failures 𝑑 2 𝑦 1 𝑦 2 π‘œ coded 𝑙 data Encoded symbols symbols 𝑦 𝑙 Facebook: Reed-Solomon π‘œ = 14, 𝑙 = 10 𝑑 π‘œ 25

  26. Question of Interest β€’ If two (or more) independent DSS share some common data, can we jointly design the corresponding MDS codes to get a better overall failure protection?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend