diagonals of rational functions
play

Diagonals of rational functions Main Conference of Chaire J. Morlet - PowerPoint PPT Presentation

Diagonals of rational functions Main Conference of Chaire J. Morlet Artin approximation and infinite dimensional geometry 27 mars 2015 Pierre Lairez TU Berlin . . . . . .. . . . . . . .. . . . . . . .. . . . . . . .. . . .. . . .


  1. Diagonals of rational functions Main Conference of Chaire J. Morlet Artin approximation and infinite dimensional geometry 27 mars 2015 Pierre Lairez TU Berlin . . . . . .. . . . . . . .. . . . . . . .. . . . . . . .. . . .. . . . . .

  2. . . . . . . . . . . . . . . . . Diagonals: definitions and properties Binomial sums Computing diagonals Diagonals: definitions and properties Binomial sums . . . . . . . . . . . . . . . . . . . . . . . . Computing diagonals

  3. . . . . . . . . . . . . . . . . Diagonals: definitions and properties Binomial sums . Diagonal of a power series Défjnition . Computing diagonals . . . . . . . . . . . . . . . . . . . . . . ∑ a i 1 ,..., i n x i 1 1 · · · x i n ▶ f = n ∈ Q ⟦ x 1 ,. . . , x n ⟧ i 1 ,..., i n ∈ N n ∑ a i ,..., i t i ▶ diag f def = i ⩾ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  4. . 1 . . . . . . . Diagonals: definitions and properties Binomial sums Computing diagonals A combinatorial problem Counting rook paths 2 . 3 4 5 6 1 2 3 4 5 6 7 def Easy recurrence: . . . . . . . . . . . . . . . . . . . . . . . . . of a recurrence? . . . . . . (7 , 10) = nb. of rook paths from (0 , 0) to ( i , j ) a i , j y ∑ ∑ a i , j = a k , j + a i , k k < i k < j x What about a n , n ? asymptotic? existence (0 , 0)

  5. . . . . . . . . . . . . . . . . . Diagonals: definitions and properties Binomial sums Computing diagonals Recurrence relations for rook paths . . . . . . . . . . . . . . . . . . . . . . . ▶ dimension 2 9 nu n − (14 + 10 n ) u n +1 + (2 + n ) u n +2 = 0 ▶ dimension 3 − 192 n 2 (1 + n )(88 + 35 n ) u n +(1 + n )(54864 + 100586 n + 59889 n 2 + 11305 n 3 ) u n +1 − (2 + n )(43362 + 63493 n + 30114 n 2 + 4655 n 3 ) u n +2 +2(2 + n )(3 + n ) 2 (53 + 35 n ) u n +3 = 0 ▶ dimension 4 5000 n 3 (1 + n ) 2 (2705080 + 3705334 n + 1884813 n 2 + 421590 n 3 + 34983 n 4 ) u n − (1 + n ) 2 (80002536960 + 282970075928 n + · · · + 6386508141 n 6 + 393838614 n 7 ) u n +1 +2(2 + n )(143370725280 + 500351938492 n + · · · + 2636030943 n 7 + 131501097 n 8 ) u n +2 − (3 + n ) 2 (26836974336 + 80191745800 n + 100381179794 n 2 + · · · + 44148546 n 7 ) u n +3 +2(3 + n ) 2 (4 + n ) 3 (497952 + 1060546 n + 829941 n 2 + 281658 n 3 + 34983 n 4 ) u n +4 = 0

  6. . . . . . . . . . . . . . . . . Diagonals: definitions and properties Binomial sums Computing diagonals Difgerential equation for diagonals difgerential equation with polynomial coefgicients . . . . . . . . . . . . . . . . . . . . . . . . 1 ∑ ∑ ∑ a i , j x i y j = a i , j = a k , j + a i , k ⇒ y x 1 − 1 − x − i , j ⩾ 0 1 − y k < i k < j a n , n t n = diag � � 1 ∑ . � � y x 1 − 1 − x − n ⩾ 0 1 − y Theorem (Lipshitz 1988) — “diagonal ⇒ difgerentially finite” If R ∈ Q ( x 1 ,. . . , x n ) ∩ Q ⟦ x 1 ,. . . , x n ⟧ , then diag R satisfies a linear c r ( t ) y ( r ) + · · · + c 1 ( t ) y ′ + c 0 ( t ) y = 0 .

  7. . . . . . . . . . . . . . . . . . Diagonals: definitions and properties Binomial sums Computing diagonals More properties of diagonals . . . . . . . . . . . . . . . . . . . . . . . Theorem (Furstenberg 1967) — “algebraic ⇒ diagonal” If f ( t ) = ∑ a n t n is an algebraic series (i.e. P ( t , f ( t )) = 0 for some P ∈ Q [ x , y ] ), then it is the diagonal of a rational power series. Theorem (Furstenberg 1967) — “diagonal ⇒ algebraic mod p ” If ∑ a n t n ∈ Q ⟦ t ⟧ is the diagonal of a rational power series, then it is an algebraic series modulo p for almost all prime p .

  8. . . . . . . . . . . . . . . . . Diagonals: definitions and properties Binomial sums Computing diagonals Example is not algebraic. Besides, . . . . . . . . . . . . . . . . . . . . . . . . Algebricity modulo p ( ) (3 n )! 1 ∑ n ! 3 t n = diag f = 1 − x − y − z n ▶ f ≡ (1 + t ) − 1 mod 5 4 1 + 6 t + 6 t 2 ) − 1 ( 6 ▶ f ≡ mod 7 1 + 6 t + 2 t 2 + 8 t 3 ) − 1 ( ▶ f ≡ 10 mod 11 ▶ … ( ) 27 t 2 − t f ′′ + (54 t − 1) f ′ + 6 f = 0 .

  9. . . . . . . . . . . . . . . . Diagonals: definitions and properties . Computing diagonals def I def I We check . Binomial sums . . . . . . . . . . . . . . . . . . . . . . . Proof of algebricity modulo p F q , the base field Slicing operators — For r ∈ Z , E r � a i t i � a qi + r t i and E r � a I x I � ∑ ∑ ∑ ∑ = = a q I +( r ,..., r ) x I � � � � i i ▶ diag ◦ E r = E r ◦ diag ; ▶ x i E r ( F ) = E r ( x q i F ) ; ▶ G ( x ) E r ( F ) = E r ( G ( x ) q F ) , because G ( x q ) = G ( x ) q , where x q = x q 1 ,. . . , x q n ; ▶ If f ( t ) = ∑ i a i t i , then ∑ t r ∑ a qi + r t qi f ( t ) = 0 ⩽ r < q i

  10. . . . . . . . . . . . . . . . Diagonals: definitions and properties Binomial sums Computing diagonals . We check I def . . def . . . . . . . . . . . . . . . . . . . . . . I Proof of algebricity modulo p F q , the base field Slicing operators — For r ∈ Z , E r � a i t i � a qi + r t i and E r � a I x I � ∑ ∑ ∑ ∑ = = a q I +( r ,..., r ) x I � � � � i i ▶ diag ◦ E r = E r ◦ diag ; ▶ x i E r ( F ) = E r ( x q i F ) ; ▶ G ( x ) E r ( F ) = E r ( G ( x ) q F ) , because G ( x q ) = G ( x ) q , where x q = x q 1 ,. . . , x q n ; ▶ If f ( t ) = ∑ i a i t i , then q t r � a qi + r t i � ∑ ∑ f ( t ) = � � 0 ⩽ r < q i

  11. . . . . . . . . . . . . . . . . Binomial sums Computing diagonals def I def I We check . Diagonals: definitions and properties . . . . . . . . . . . . . . . . . . . . . . . Proof of algebricity modulo p F q , the base field Slicing operators — For r ∈ Z , E r � a i t i � a qi + r t i and E r � a I x I � ∑ ∑ ∑ ∑ = = a q I +( r ,..., r ) x I � � � � i i ▶ diag ◦ E r = E r ◦ diag ; ▶ x i E r ( F ) = E r ( x q i F ) ; ▶ G ( x ) E r ( F ) = E r ( G ( x ) q F ) , because G ( x q ) = G ( x ) q , where x q = x q 1 ,. . . , x q n ; ▶ If f ( t ) = ∑ i a i t i , then ∑ t r E r ( f ) q f ( t ) = 0 ⩽ r < q

  12. . . . . . . . . . . . . . . . . Binomial sums Computing diagonals diag F Proof. F F . Diagonals: definitions and properties . . . . . . . . . . . . . . . . . . . . . . . Proof of algebricity modulo p Let R = A F ∈ F q ( x ) , d = max ( deg A , deg F ) and the F q -vector space { } ) � � ( ( d + n )) ( P � deg P ⩽ d V = ⊂ F q ⟦ t ⟧ dim V ⩽ n 1. Operators E r stabilize V . ( P ) = diag ◦ E r � PF q − 1 � E r ◦ diag � � F q = diag � E r ( PF q − 1 ) � ∈ V � �

  13. . . . . . . . . . . . . . . . . Diagonals: definitions and properties Binomial sums Computing diagonals . Proof. . . diag . . . . . . . . . . . . . . . . . . . . . F Proof of algebricity modulo p Let R = A F ∈ F q ( x ) , d = max ( deg A , deg F ) and the F q -vector space { } ) � � ( ( d + n )) ( P � deg P ⩽ d V = ⊂ F q ⟦ t ⟧ dim V ⩽ n 1. Operators E r stabilize V . 2. Let f 1 ,. . . , f s be a basis of V . There exist c ij ∈ F q [ t ] such that ∑ c ij f q ∀ i , f i = j . j ( ∑ ) q ∑ ∑ t r E r ( f i ) q = t r f i = b ij f j 0 ⩽ r < q 0 ⩽ r < q j ( ∑ ) ∑ f q b ij t r = j j 0 ⩽ r < q

  14. . . . . . . . . . . . . . . . Diagonals: definitions and properties Binomial sums Computing diagonals diag F . Proof. Vect . . . . . . . . . . . . . . . . . . . . . . . . . Proof of algebricity modulo p Let R = A F ∈ F q ( x ) , d = max ( deg A , deg F ) and the F q -vector space { } ) � � ( ( d + n )) ( P � deg P ⩽ d V = ⊂ F q ⟦ t ⟧ dim V ⩽ n 1. Operators E r stabilize V . 2. Let f 1 ,. . . , f s be a basis of V . There exist c ij ∈ F q [ t ] such that ∑ c ij f q ∀ i , f i = j . j 3. All the elements of V are algebraic. ∑ ij f q 2 ∀ i , f q j c q i = , etc. j ∆( R ) q k � � { } � Thus, over F q ( t ) , Vect � 0 ⩽ k ⩽ s ⊂ { } � � � { } � � f q k f q s � 1 ⩽ i ⩽ s � 0 ⩽ k ⩽ s , 1 ⩽ i ⩽ s ⊂ Vect i i

  15. . . . . . . . . . . . . . . . Diagonals: definitions and properties Binomial sums Computing diagonals Characterization of diagonals? Conjecture (Christol 1990) linear difgerential equation with polynomial coefgicients, then it is the diagonal of a rational power series. . . . . . . . . . . . . . . . . . . . . . . . . . “integer coefgicients + convergent + difg. finite ⇒ diagonal” If ∑ a n t n ∈ Z ⟦ t ⟧ , has radius of convergence > 0 , and satisfies a A hierarchy of power series — For f ∈ Q ⟦ t ⟧ , let N ( f ) be the minimum number of variables x 1 ,. . . , x N ( f ) such that f = diag R ( x 1 ,. . . , x N ( f ) ) , with R rational power series, if any. ▶ N ( f ) = 1 ⇔ f is rational ▶ N ( f ) = 2 ⇔ f is algebraic irrational (∑ ) (3 n )! n ! 3 t n = 3 ▶ N n ▶ Qvestion : Find a f such that 3 < N ( f ) < ∞ .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend