development of nb3al superconducting magnets for lhc
play

Development of Nb3Al Superconducting Magnets for LHC Luminosity - PowerPoint PPT Presentation

Development of Nb3Al Superconducting Magnets for LHC Luminosity Upgrade - Technical Progress and Further Plan - Akira YAMAMOTO and Tatsushi NAKAMOTO KEK CERN-KEK Committee, 3 rd meeting, 12 December, 2008 Advantage of Nb


  1. Development of Nb3Al Superconducting Magnets for LHC Luminosity Upgrade � - Technical Progress and Further Plan - � Akira YAMAMOTO � and � Tatsushi NAKAMOTO � KEK � CERN-KEK Committee, 3 rd meeting, 12 December, 2008 �

  2. Advantage of Nb 3 Al over Nb 3 Sn � As of now, critical current density (Jc) of Nb3Sn is higher than Nb3Al. But, …. � Jc vs. Stress � Jc vs. B � Nb3Al � 4000 NbTi(4.2K) 3500 NbTi(1.9K) (NbTa)3Sn(PIT) 3000 Nb3Sn(RRP) Nb3Al(RHQT) 2500 Nb3Al(RHQT) Jc (A/mm2) 2000 1500 1000 Nb3Sn � 500 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 B(T) Presented at MT-20 By A. Kikuchi et al. Better mechanical performance of Nb3Al >> No degradation of Jc below 210 MPa. � For Nb3Sn (RRP), Jc is decreased to be around half at 150 MPa. � � @B=12T Jc~3000 A/mm 2 --> 1350 A/mm 2 � �

  3. Objective For the LHC luminosity upgrade, we have been developing � -High fi eld superconductor and cable made with Nb 3 Al, � Complementary to Nb 3 Sn superconductor and magnet development at CERN and US-LARP. �

  4. High Field Accelerator Magnet Development A Global Cooperation Network: Present � EU-CARE � France: CEA-Saclay � CERN � CERN-KEK � He Heat Transfer Study � Collaboration � CERN-US(DOE) � Japan � US-LARP � Magnet Technology Transfer � KEK � LBNL � NIMS � FNAL � Cabling, Subscale coil � BNL � SLAC � 4 �

  5. High Field Accelerator Magnet Development A Global Cooperation Network: Proposal � EU-CARE � France: CEA-Saclay � CERN � CERN-KEK � He Heat Transfer Study � Collaboration � CERN-US(DOE) � Japan � US-LARP � US-Japan � Collaboration � KEK � LBNL � NIMS � FNAL � Magnet Technology Transfer � BNL � Cabling, Subscale coil � SLAC � 5 �

  6. Participants / Collaborators � KEK: N. Kimura, T. Nakamoto, T. Ogitsu, K. Sasaki, � A. Terashima, K. Tsuchiya, Q. Xu, and A. Yamamoto, � NIMS: N. Banno, A. Kikuchi, and T. Takeuchi, � In cooperation of: � CERN: L. Rossi/G. de Rijk et al., (TBA) � Fermilab: M. Lamm et al., (TBA) � LBNL: G. Sabbi/S. Caspi et al., (TBA) � BNL/LARP: P. Wanderer et. al., (TBA) � CEA/Saclay: B. Bourdy et al (TBA) �

  7. Technical Progress in 1st stage � JFY2006-2008 �

  8. Development Items • � Strand development (KEK and NIMS) � � - Higher non-Cu Jc: Target 1500 A/mm2 at 15 T � � - Reduction of low- fi eld-magnetization � � � Ta-matrix (Non-superconductor at 4.2K) � � � � Ta sheath wire by KEK � Break at extrusion & drawing � � � � Nb sheath wire by NIMS � Effects to Jc? � � - Cu stabilization technique � � � Mechanical strength � ME493 � � � Electroplating on Ta-matrix wire � � � Long piece-length � Nb skin � • � Cable development (NIMS and Fermilab) � Nb � - trial fabrication � core � � � packing factor � � � twist pitch � � - race track coil � Ta inter fi lament matrix �

  9. Nb3Al: Rapid Heating Quench Method � Mono- fi lament � Jerry-Roll: � Nb+Al sheets, Nb or Ta core � Multi- fi lament � Precursor (Nb/Al) � Rapid Heating Quenching (RHQ) � (Nb/Al)ss � Strand w/o Cu � Continuous Electroplating for Ta-matrix Wire � Cu stabilization � Area reduction � Rolling � 2 nd heating (800 �� 10h) � Nb 3 Al � A15 strand w/ Cu � 9 � ~1.5 m/h : thickness of ~170 μ m Cu �

  10. Nb-Al billet fabrication experience (Hitach Cable) Extruder Billet size 1.35 � wire length # of fabrication ~2005 ~2008 100 ton 28 mm � ,< 150 mmL ~35 m many 400 ton 61 mm � ,< 300 mmL ~330 m ~30 + 9 4000 ton 141 mm � ,< 600 mmL ~4000 m 3 4000 ton billet �

  11. Fabricated or fabricating strands � ������������������������� 2005 � ���� ���� ���� ���� ���� ���� 2003 � ������ ����� ����� ����� ����� ����� ����� ��� ��� ����������������� �� �� �� �� ��� �� �� �� �������������� ������ ������ ������ ������ ������ ������ ������ ������� Skin � � � � Nb � Ta � Nb Ta Nb �������������� ��� ���� ���� ��� ��� ��� ��� ��� �������������� ��� ��� ��� ��� ��� ��� ��� ��� ��������������� ����� � �� � ���� � ���� � ���� � �������������������������� � ����������� � � � ������� ���������������� ��� ���� ���� ���� ���� ���� ���� ���� ������������� μ �� �� ���� ���� �� ���� ���� �� �� ���������������� μ �� ��� ��� ��� � � � �� � ������������������� ��� ��� ��� ��� ��� ��� ��� ��� ������������������ �� �� � �� � � �� �� ����������� ���� ���� ��� ��� ��� ��� ��� ��� �������������� �� �� �� ���� �������������������� ���� ������������ ���� ����� ����� ������������������ ���� ���� ���� ���������������� μ �� ���� ��������� �� �� ���� ����������������� μ �� ��� ����������� ��� ��� ��� ���������������� �� �� �� ����������������� ��������������������� ���� �������������� ���� �������������� ��� ��� ��� ��������� ���� ���� ���� ���� ��������� ���� ���� ���� ���� ��������� ���� ��� ������������ ��� ��� ���

  12. Mechanical Property of Nb3Al Wire (No Copper) � Nb-matrix (ME451) � Ta-matrix (ME476) � Vicker’s 700 600 hardness � 500 Vickers Hardness outer sheath Ta 400 central core Ta outer filaments 300 inner filaments 200 100 0 0 10 20 30 40 50 60 70 Area Reduction Ratio (%) 2000 20 ME476 0.2% Yield Stress Elongation ME451 0.2% Yield Stress Elongation 0.2 % Yield Stress (MPa) Fracture Elongation (%) 0.2% Yield Stress 1500 15 & Fracture Difference � Elongation � 1000 10 b/w Nb and Ta � is not so 500 5 signi fi cant. � 0 0 0 10 20 30 40 50 60 70 80 Area Reduction Ratio (%)

  13. Continuous Electroplating for Ta-matrix Wire � KEK � 1) Strike plating of thin Ni on the surface � 2) Electroplating of thick copper � 3) Heat treatment for stabilize the bonding � � electroplating speed: ~1.5 m/h � � � (Cu thickness of ~0.17 mm) � NIMS � 1) Ion-plating of thin Cu � 2) High speed electroplating of thick copper � 3) Heat treatment for stabilizing the bonding � ion-plating speed: 120 m/h � electroplating speed: ~6 m/h �

  14. Copper Stabilizer � Mechanical Bonding Strength � Rolling � RRR of electroplated copper Different EP solution � Bent wire to see the folds and � projections of Cu stabilizer �

  15. Jc of Nb3Al Wire with Ta Matrix � Non-Cu Jc of ME476 (with Ta matrix) wire dia = 1.0 mm � ME476 w/ Ta 807 A/mm2 @15T � ME493 w/ Ta 718 A/mm2 @15T � Effect of the RHQ current on non-Cu Jc ( wire dia = 1.35 mm) (ME451 w/ Nb 946 A/mm2 @15T) � 1400 700 ME493 � 223 A 15 T 1200 224.5 A 600 16 T 226 A 18 T 1000 Non-Cu Jc (A/mm 2 ) 229 A Non-Cu Jc (A/mm 2 ) 500 230.5 A 800 400 600 300 400 200 200 100 0 0 10 12 14 16 18 222 224 226 228 230 232 B (T) RHQ Current (A) Note: Non-Cu Jc of the samples treated at � different RHQ current �

  16. Low Field Magnetization � Ta-matrix (ME476, 493) � ME476-226-1.00 Non-Cu Jc = 807 A/mm2 @ 15T, 4.2 K 400 ME476-226A-1.00 4.4 K 2 K Magnetization M (kA/m) 200 Nb-matrix (ME451) � 0 ME451-226.6-1.03 Non-Cu Jc = 946 A/mm2 @ 15T, 4.2K -200 400 4.4 K ME451-226.5A-1.03 2 K -400 Magnetization M (kA/m) 200 -2 -1 0 1 2 Field (T) 0 -200 -400 -2 -1 0 1 2 Field (T) No fl ux jumps observed at 4.4 K �

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend