development of a new gas filled magnet spectrometer
play

- Development of a new Gas Filled Magnet spectrometer within the - PowerPoint PPT Presentation

Study of the fission dynamics via Isomeric Ratio Measurements at Lohengrin - Development of a new Gas Filled Magnet spectrometer within the FIPPS project A. Chebboubi, G. Kessedjian, C. Sage, O. Meplan LPSC, Universit Grenoble-Alpes,


  1. Study of the fission dynamics via Isomeric Ratio Measurements at Lohengrin - Development of a new Gas Filled Magnet spectrometer within the FIPPS project A. Chebboubi, G. Kessedjian, C. Sage, O. Meplan LPSC, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble H. Faust, U. Köster, A. Blanc, P. Mutti Institut Laue-Langevin, Grenoble O. Serot, O. Litaize CEA-Cadarache, DEN/DER/SPRC/LEPh T. Materna, S. Panebianco CEA Saclay, DSM/IRFU/SPhN 1 Séminaire Doctorant, LPSC, Juin 2014

  2. Outline • Nuclear fission and usefulness of nuclear data for applications and fundamental physics • Development of a new spectrometer : Gas Filled Magnet (GFM) • Properties of a GFM : experimental outcome • Comparison with a Monte Carlo Calculation • Isomeric Ratio measurements at Lohengrin (ILL) 2 Séminaire Doctorant, LPSC, Juin 2014

  3. Outline • Nuclear fission and usefulness of nuclear data for applications and fundamental physics • Development of a new spectrometer : Gas Filled Magnet (GFM) • Properties of a GFM : experimental outcome • Comparison with a Monte Carlo Calculation • Isomeric Ratio measurements at Lohengrin (ILL) 3 Séminaire Doctorant, LPSC, Juin 2014

  4. Part 1 : Nuclear Fission and Context of Nuclear Data Nuclear Fission Process 𝟐𝟏 −𝟐𝟕 − 𝟐𝟏 −𝟐𝟑 𝟐𝟏 −𝟕 − 𝟐𝟏 𝟘 𝟐𝟏 −𝟑𝟏 s Discovered by Hahn, Strassman and Meitner in 1938 → Chemistry Nobel Prize 1944 A heavy nucleus is broken into two lighter fragments. Emission of a few particles (neutron, 𝛿 ) 4 Séminaire Doctorant, LPSC, Juin 2014

  5. Part 1 : Nuclear Fission and Context of Nuclear Data Context of the fission yield studies  Impact of fission yields on the current and innovative fuel cycles 𝑍 𝐵, 𝑎, 𝐹 ∗ , 𝐾 𝜌 = 𝑍 𝐵, 𝑎 × 𝑄(𝐹 ∗ , 𝐾 𝜌 ) • Inventory of spent fuel • Isotopic composition → Residual power 𝑍(𝐵, 𝑎) • Radiotoxicity of spent fuel Modeling prompt particle emission (n/ 𝛿 ) • 𝑄 𝐹 ∗ , 𝐾 𝜌 → foreseen material damage/heating in reactor studies 5 Séminaire Doctorant, LPSC, Juin 2014

  6. Part 1 : Nuclear Fission and Context of Nuclear Data Context of the fission yield studies 𝑍 𝐵, 𝑎, 𝐹, 𝐾 𝜌 = 𝑍 𝐵, 𝑎 × 𝑄(𝐹, 𝐾 𝜌 )  Measurements for fission process study • Improving the predictive power of fission models is necessary for the evaluations at different neutron energies → 𝑍 𝐵, 𝑎, 𝐹, 𝐾 𝜌 • Lack on dynamical aspect for fission process modelisation • Inconsistency between Models or evaluations and Experiments for heavy fragments and symmetric region Disagreement between fission models and experimental data assessment 6 Séminaire Doctorant, LPSC, Juin 2014

  7. Part 1 : Nuclear Fission and Context of Nuclear Data How to measure Spin Distribution ? 𝑢ℎ 𝐵, 𝑎, 𝐹 ∗ , 𝐾 𝜌 = 𝑍 𝐵 × 𝑄 𝑎 𝐵 × 𝑄 𝐹 ∗ 𝐵,𝑎 × 𝑄 𝐾 𝜌 𝑍 𝐵,𝑎,𝐹 ∗ 15 Excitation Energy (MeV) States filled by fission Neutrons 10 Statistical ( prompt γ ) 5 Discrete 𝜹 Isomer emission 9 Spin(J) 6 3 To study Spin distribution, look at 𝛿 𝑞𝑠𝑝𝑛𝑞𝑢 , 𝑜 𝑞𝑠𝑝𝑛𝑞𝑢 structure effect at low excitation energy : Isomeric Ratio Isomer : state with longer half-life than neighboring states 7 Séminaire Doctorant, LPSC, Juin 2014

  8. Part 1 : Nuclear Fission and Context of Nuclear Data How to measure Spin Distribution ? 𝑢ℎ 𝐵, 𝑎, 𝐹 ∗ , 𝐾 𝜌 = 𝑍 𝐵 × 𝑄 𝑎 𝐵 × 𝑄 𝐹 ∗ 𝐵,𝑎 × 𝑄 𝐾 𝜌 𝑍 𝐵,𝑎,𝐹 ∗ 𝑄 𝑂 𝑗𝑡𝑝𝑛𝑓𝑠 𝑄 𝛿 𝑞𝑠𝑝𝑛𝑞𝑢 𝐵,𝑎,𝐹 ∗ 𝑂 𝐻𝑇 𝐵,𝑎,𝐹 𝑙 • Isomeric ratio : Recent measurements on Lohengrin TOF Min/s Isomers : 98 136 132 130 129 129 99 𝐽, 𝑇𝑐, 𝑇𝑐, 𝑇𝑐, 𝑇𝑜, 𝑂𝑐, 𝑍  B µs Isomers : 𝛿 /n detectors 136 132 129 99 98 94 88 𝑌𝑓, 𝑈𝑓, 𝑇𝑐, 𝑍, 𝑍, 𝑍, 𝐶𝑠 ns Isomers : Gas-filled Almost all isotopes in heavy mass region Fragment (A,Z,E kin ) detection 8 Séminaire Doctorant, LPSC, Juin 2014

  9. Part 1 : Nuclear Fission and Context of Nuclear Data How to measure Spin Distribution ? 𝑢ℎ 𝐵, 𝑎, 𝐹 ∗ , 𝐾 𝜌 = 𝑍 𝐵 × 𝑄 𝑎 𝐵 × 𝑄 𝐹 ∗ 𝐵,𝑎 × 𝑄 𝐾 𝜌 𝑍 𝐵,𝑎,𝐹 ∗ 𝑄 𝑂 𝑗𝑡𝑝𝑛𝑓𝑠 𝑄 𝛿 𝑞𝑠𝑝𝑛𝑞𝑢 𝐵,𝑎,𝐹 ∗ 𝑂 𝐻𝑇 𝐵,𝑎,𝐹 𝑙 • Isomeric ratio : Recent measurement on Lohengrin TOF Min/s Isomers : 98 136 132 130 129 129 99 𝐽, 𝑇𝑐, 𝑇𝑐, 𝑇𝑐, 𝑇𝑜, 𝑂𝑐, 𝑍  B µs Isomers : 𝛿 /n detectors 136 132 129 99 98 94 88 𝑌𝑓, 𝑈𝑓, 𝑇𝑐, 𝑍, 𝑍, 𝑍, 𝐶𝑠 ns Isomers : Gas-filled Almost all isotopes in heavy mass region Fragment (A,Z,E kin ) detection • FIPPS (Fission Product Prompt gamma-ray Spectrometer) Goals : - Direct measurement of prompt particles ( 𝛿 𝑞𝑠𝑝𝑛𝑞𝑢 , 𝑜 𝑞𝑠𝑝𝑛𝑞𝑢 ) - Fission product spectroscopy (astrophysics interest) - Neutron emission - Short lifetime isomers (ps,ns) 9 Séminaire Doctorant, LPSC, Juin 2014

  10. Outline • Nuclear fission and usefulness of nuclear data for applications and fundamental physics • Development of a new spectrometer : Gas Filled Magnet (GFM) • Properties of a GFM : experimental outcome • Comparison with a Monte Carlo Calculation • Isomeric Ratio measurements at Lohengrin (ILL) 10 Séminaire Doctorant, LPSC, Juin 2014

  11. Part 2 : GFM Development Back to the present : Lohengrin limits Lohengrin : selection with the mass over ionic charge ratios 𝐵 𝑟 and Kinetic energy over Ionic charge 𝐹 𝑙 𝑟 (A 1 ,E 1 ,q 1 )≡ (A 2 ,E 2 ,q 2 ) ≡(A 3 ,E 3 ,q 3 ) Limits : 2 µs time of flight (TOF) → no prompt particle study ( 10 −16 s) • A 1 ; A 2 ; A 3 Utility for GFM study : • Fission Fragment Source !! IC  B RED 11 Séminaire Doctorant, LPSC, Juin 2014

  12. Part 2 : GFM Development Experimental Setup for GFM study Setup : The RED magnet is now filled with various gases → GFM 𝐶𝜍 ∝ 𝐵 𝑤 𝑨 GFM : Spatial dispersion of fission 𝑟 𝑎 fragments according to Ionisation 𝑄,𝐻𝑏𝑡 the mass A and Nuclear charge Z 𝐶𝜍 ∝ 𝐵 Chamber [1] 1 𝑎 3 𝑩 𝟑 Goal : Study of properties of this device / feasibility IC  B GFM 12 Séminaire Doctorant, LPSC, Juin 2014

  13. Part 2 : GFM Development GFM separation power Ionisation Chamber 𝑩 𝟑 IC  B GFM 13 Séminaire Doctorant, LPSC, Juin 2014

  14. Part 2 : GFM Development Gas Comparison : Experimental results Gas Pressure Electronic density Resolution ratio 𝑂 2 7 mbar 1 2,2 % He 40 mbar 0,82 2,1 % 𝐵𝑠 − 𝐷𝐼 4 8,5 mbar 1,5 3,0 % Evolution of the magnetic resolution with 𝜍 𝑓 − density in several gases for A=98 𝐸𝑓𝑜𝑡𝑗𝑢𝑧 = 𝜍 𝑓 − 𝑂 2 , 𝑄 = 7𝑛𝑐𝑏𝑠 0,04 0,035 Magnetic resolution 𝑄 0,03 N2 0,025 0,02 He 0,015 Ar-CH4 0,01 Y98 (N2) 0,005 Poly. (N2) 0 0 0,5 1 1,5 2 Density (arbitrary unit) 14 Séminaire Doctorant, LPSC, Juin 2014

  15. Part 2 : GFM Development Monte Carlo Calculation Architecture Trajectory inside GFM : Initial Condition: Effective charge : 𝑟 𝑓𝑔𝑔 • Position/Velocity/Ionic charge/Magnetic Field • Charge changing probability • Solution of motion equation • Energy loss calculation • Straggling effect Exit Condition: Is the particle detected? = 𝑦, 𝑧 ∈ Ionization Chamber 15 Séminaire Doctorant, LPSC, Juin 2014

  16. Part 2 : GFM Development Gas Filled Magnet : What to compare along the pressure We will compare 𝐶 16 Séminaire Doctorant, LPSC, Juin 2014

  17. Part 2 : GFM Development 𝑶 𝟑 Gas Filled Magnet : Test 98 Y & A=98 / E=90MeV / 233 U Energy loss in GFM for Mass 98 @ E=90MeV (Gaus) 𝑁𝐷𝐷 ± 1𝜏 𝐶 90 80 70 60 B Δ Egaz 50 July 2012 Experiment Preliminary results 40 30 Monte Carlo 𝜏 𝐶 : beam width 20 Calculation 10 0 0 5 10 15 Pressure (mbar) Big Three free parameters in 𝑂 2 𝜏 2𝑓− 𝑙 = 𝜏 𝑓− = 0,56 ± 0,05 • 𝜍 𝑟 𝑓𝑔𝑔 = 𝑟 𝐶𝑓𝑢𝑨 + 𝛾 ln 𝜍 0 → 𝛾 = −0,4 • • Δ𝑄 = P meas − P MCC = 0,5 ± 0,3 mbar 98 experimental data 𝑍 Set using A=98 & 17 Séminaire Doctorant, LPSC, Juin 2014

  18. Part 2 : GFM Development 𝑶 𝟑 Gas Filled Magnet : Comparison E=95MeV / 235 U (Gaus) B Preliminary results Agreement for pressure below 10 mbar at 1𝜏 • shift • 𝑙 → 𝐶 • For 𝑄 > 10 𝑛𝑐𝑏𝑠 inconsistent calculation → Density effect on effective charge calculation Predictive calculation for light mass at 1 𝜏 Design the new spectrometer (find the better geometry) 18 Séminaire Doctorant, LPSC, Juin 2014

  19. Outline • Nuclear fission and usefulness of nuclear data for applications and fundamental physics • Development of a new spectrometer : Gas Filled Magnet (GFM) • Properties of a GFM : experimental outcome • Comparison with a Monte Carlo Calculation • Isomeric Ratio measurements at Lohengrin (ILL) 19 Séminaire Doctorant, LPSC, Juin 2014

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend