densification grain growth and texturation in sps nanozno
play

Densification, grain growth and texturation in SPS nanoZnO ceramics - PowerPoint PPT Presentation

Densification, grain growth and texturation in SPS nanoZnO ceramics Giovannelli F. a , Daz-Chao P. b Lebedev O. b , Chateigner D. b , Guilmeau E. b , Delorme F. a A Universit Franois Rabelais de Tours, CNRS, CEA, INSA CVL, GREMAN, IUT Blois,


  1. Densification, grain growth and texturation in SPS nanoZnO ceramics Giovannelli F. a , Díaz-Chao P. b Lebedev O. b , Chateigner D. b , Guilmeau E. b , Delorme F. a A Université François Rabelais de Tours, CNRS, CEA, INSA CVL, GREMAN, IUT Blois, France. B CRISMAT, UCBN, ENSICAEN, Caen, France 27th september 2016 Limoges

  2. Motivation • Transparent oxide (Gap ~ 3.3 eV) ZnO: • Hexagonal structure • Stability at high temperatures • Biocompatible • Multiple applications: Photovoltaics, varistors, medicine… Seebeck Electrical conductivity • n-type TE oxide ZnO as • Abundant elements thermoelectric material • ZT ~ 0.6 Temperature Thermal conductivity • High densities at low temperatures Why SPS? • Small grain sizes � Low thermal conductivity ( κ ) 2

  3. Controlled precipitation in aqueous solution 125 ml 4 M NaOH 100 ml 1 M Zn(NO 3 ) 2 ·6H 2 O (+ 5 % AlCl 3 ) Dropwise addition, stirring, 20 ° C Centrifugation (4000 rpm-5 min) Washing 4 times 3

  4. Starting powders Starting material Al-doped ZnO - Pure and Al doped (0.3%) ZnO powder Intensity (arb. units) prepared by co-precipitation Pure ZnO - No secondary phases 1 0 1 0 0 2 - Non-isotropic morphologies 1 0 0 10 20 30 40 50 60 70 80 90 100 2 θ Pure ZnO Al doped ZnO 4

  5. Pure ZnO Al doped ZnO Starting Powder: � No secondary phases (Al doped 0.3%) � Non-isotropic morphologies: • Pure ZnO: -platelets, flower-like structures ( c -axis in plane) • Al-doped ZnO: -platelets, isolated ( c -axis in the plane) -spherical small particles -needle like (along the c -axis) 5

  6. • P = 100 MPa SPS sintering Conditions • 500°C < T < 1100°C • 100°C/min, 5’ 100 a ) 90 Relative Density (%) 80 70 60 50 Pure ZnO 40 Doped ZnO (Al 0.3% at.) 30 0 200 400 600 800 1000 1200 Temperature (°C) Pure ZnO T<800°C � Low densities (<70%) Al-doped ZnO T > 800°C � High densities (>90%) T > 500°C � High densities (>90%) 6

  7. Al:ZnO (0.3%) Pure ZnO 1000°C XRD on Intensity (arb. units) 1100°C Intensity (arb. units) 800°C the surface 1000°C 600°C 800°C 500°C 600°C 28 30 32 34 36 38 40 28 30 32 34 36 38 40 2 θ 2 θ Pure ZnO Al doped ZnO • Low texturation degree • High texturation degree • Evolution of the 1 0 0 peak • Suppression of the 0 0 2 peak • c -axis perpendicular to pressure 7

  8. Pure ZnO Al doped ZnO φ γ 600°C 500°C φ γ 800°C 600°C 1000°C 800°C 1000°C 1100°C • High texturation degree • Low texturation degree • (1 0 0)//pressure • Low T: (1 0 0)//pressure axis ∀ T • (0 0 2) ⊥ pressure • High T: (0 0 2)//pressure axis 8

  9. MORPHOLOGY: Isotropic grain Al-doped ZnO 500 ° C Intensity (arb. units) Intensity (arb. units) 28 30 32 34 36 38 40 28 30 32 34 36 38 40 2 θ 2 θ Cross Section Surface 9

  10. MORPHOLOGY: Evolution of the grain size Al doped ZnO Pure ZnO Pure ZnO: Al doped ZnO: -Isotrope grains at high temperatures -Isotrope grains at all temperatures -Grain growth from T > 800°C -Grain growth from T ~ 500°C 10

  11. DENSIFICATION MECHANISM Pure ZnO Al doped ZnO 11

  12. Thermoelectric properties: influence of the texturation 0.06 -280 Thermal conductivity (W/m·K) c ) 30 a ) Perpendicular pressure direction Perpendicular pressure direction b ) Parallel pressure direction Parallel pressure direction -300 25 0.05 -320 ρ ( Ω ·cm) S (µV/K) 20 -340 15 0.04 -360 Perpendicular pressure direction 10 Parallel pressure direction 0.03 -380 5 100 200 300 400 500 600 700 100 200 300 400 500 600 700 100 200 300 400 500 600 700 T (°C) T (°C) T(°C) � Perpendicular to pressure direction (c-axis randomly in plane) � Parallel to pressure direction (1 0 0 direction) • No influence of texturation on Seebeck and thermal conductivity • Low influence of texturation on electrical resistivity � 1 0 0 direction more resistive at room temperature � No influence at high temperatures (T > 300°C) 12

  13. Sintering Powder synthesis 80% 98% Al doped ZnO 60 ° C 800°C , 5 min 850°C , 30 min 100 nm 86% - Isotropic nanoparticles (< 50 nm) 900°C , 5 min 13

  14. Effect of microstructure on thermal conductivity at 50°C Pure ZnO Al doped ZnO Interconnected platelets Nanoparticles Platelets + nanoparticles 850°C/30 min 500°C 800°C 35 W/m K 34 W/m K 45 W/m K 29 W/m K Nanoparticles 12 W/m K 14

  15. Conclusions Starting powder: • Synthesis by co-precipitation of pure and 0.3% Al-doped ZnO • Non isotropic morphologies - Flower like structures in pure ZnO - Isolated platelets, nanoparticles and needles in doped ZnO • Isotropic nanoparticles in doped ZnO SPS : • Dense ceramic at 500°C • Differences in shrinkage due to different starting morphologies TE properties (doped samples): • No influence of texturation on Seebeck and thermal conductivity • Influence of texturation on the electrical resistivity: - Higher resistivity along the 100 direction at low T (T < 300°C) - No influence at high temperatures (T > 300°C) 15

  16. Thank you for your attention Densification, grain growth and texturation in SPS nanoZnO ceramics Giovannelli F. a , Díaz-Chao P. b Lebedev O. b , Chateigner D. b , Guilmeau E. b , Delorme F. a A Université François Rabelais de Tours, CNRS, CEA, INSA CVL, GREMAN, IUT Blois, France. B CRISMAT, UCBN, ENSICAEN, Caen, France 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend