densest packings with
play

densest packings with congruent copies of a convex body (Part 2) - PowerPoint PPT Presentation

Computing upper bounds for densest packings with congruent copies of a convex body (Part 2) David de Laat (TU Delft) Fernando Oliveira (FU Berlin Universidade de S ao Paulo) Frank Vallentin (Universit at zu K oln) Second ERC


  1. Computing upper bounds for densest packings with congruent copies of a convex body (Part 2) David de Laat (TU Delft) Fernando Oliveira (FU Berlin → Universidade de S˜ ao Paulo) Frank Vallentin (Universit¨ at zu K¨ oln) Second ERC SDModels Workshop, October 7–9, 2013, FU Berlin

  2. Berlin, two years ago. . .

  3. Numerical results image credit: WWW

  4. Conclusions We are developing the first step of an algorithmic solution ⋆ for a large class of packing problems Complexity of body K is reflected in the complexity ⋆ of the computation Numerical calculations are challenging ⋆ but seem to be in reach (in dimensions 2 , 3 )

  5. Theory

  6. Codes and anticodes in Cayley graphs ⇒ xy − 1 ∈ Σ Cayley ( G, Σ ) x ∼ y ⇐ Σ ⊆ G, Σ = Σ − 1 group undirected graph on G α = 2 / 5 may contain loops Cayley ( Z / 5 Z , { 1 , 4 } ) I ✓ G independent: 8 x, y 2 I, x 6 = y, x 6⇠ y ⇢ e 62 Σ � (anti-) coding problem: if e 2 Σ find indep. sets in Cayley ( G, Σ ) which are as “large” as possible max. packing density: α ( Cayley ( G, Σ ))

  7. Examples a) k -intersecting permutations ↓  G = S n , Σ = { σ : σ has < k fixed points }    a.c. b) k -intersecting transformations difficulty G = GL ( n, F q ) , Σ = { A : rank ( A − I ) > n − k }    c) distance- 1 -avoiding sets G = R n , Σ = S n − 1  d) sphere packings   G = R n , Σ = B �  n c. e) packing of congruent convex bodies  G = R n o SO ( n ) , Σ = { ( x, A ) : K � \ x + A K � 6 = ; }  

  8. Known results a), b) optima realized by ”sunflowers” I = { σ : σ (1) = 1 , . . . , σ ( k ) = k } proved (for n large wrt. k ) by Ellis, Friedgut, Pilpel (2011) I = { A : Ae 1 = e 1 , . . . , Ae k = e k } conjectured by DeCorte, de Laat, V. (2013)

  9. c)—e) wide open c) see Christine’s talk d) only known for n = 2 , 3 α ∈ [0 . 85 , 1 − 10 − 26 ] e) K = regular tetradedron Chen, Engel, Glotzer (2010) Gravel, Elser, Kallus (2011) α ∈ [0 . 92 , ?] K = regular pentagon Kuperberg 2 (1992)

  10. Bounds a)–e) upper bound come from spectral techniques (convex optimization & harmonic analysis) anticodes: n R G f ( x ) dµ ( x ) α ≤ sup : f : G → R pos. type f ( e ) o f ( x ) = 0 if x ∈ Σ f positive type: � f ( x i x − 1 j ) � ∀ x 1 , . . . , x N ∈ G : 1 ≤ i,j ≤ N is pos. semidefinite   f (0) f (1) f (2) f (3) f (4) f (4) f (0) f (1) f (2) f (3)   G = Z / 5 Z   f (3) f (4) f (0) f (1) f (2)     f (2) f (3) f (4) f (0) f (0)   f (1) f (2) f (3) f (4) f (0) if G finite, then optimal solution is Lov´ asz’ ϑ ( G )

  11. anticodes: n R G f ( x ) dµ ( x ) α ≤ sup : f : G → R pos. type f ( e ) o f ( x ) = 0 if x ∈ Σ Z If I ⊆ G indep., then 1 I ∗ ˜ 1 I ( y )1 I ( yx − 1 ) dµ ( y ) 1 I ( x ) = G ˜ f ( x ) = f ( x − 1 ) is feasible codes: f ( e ) n G f ( x ) dµ ( x ) : f : G → R pos. type α ≤ sup R o f ( x )  0 if x 62 Σ if G = F n q , then optimal solution is Delsarte’s LP bound

  12. Computing the bounds ? parametrize cone of positive type functions & use conic optimization construction of positive type functions π : G → U ( H π ) unitary representation, h ∈ H π then f ( x ) = ( π ( x ) h, h ) is positive type Gelfand-Raikov 1942: ? all positive type functions are of this form ? extreme rays of cone of pos. type functions ? come from irreducible rep.

  13. Segal-Mautner 1950: If G is nice and if f is rapidly decreasing: f is pos. type ⇐ ⇒ optimization variable Z trace( π ( x ) ˆ f ( x ) = f ( π )) d ν ( π ) b G for positive, trace-class operators b f ( π ) : H π → H π b G = { irred. unitary rep. of G } / ∼ ν = Plancherel measure on b G Z ˆ Fourier transform f ( x ) π ( x − 1 ) dµ ( x ) f ( π ) = G

  14. Σ closed under conjugation a)—d) ⇒ can restrict to central pos. type functions = f central: f ( xy ) = f ( yx ) Z χ π ( x ) ¯ χ π irreducible character f ( x ) = f ( π ) d ν ( π ) b G ¯ f ( π ) ≥ 0 ∀ π ∈ b G G = Z / 5 Z 4 e 2 π ikx/ 5 ¯ X f ( x ) = f ( k ) SDP collapses to LP k =0 ? can be analyzed by hand for a), c) ? b) not yet d) Cohn-Elkies (2003) LP bound ?

  15. e) relevant irred. rep. of R n o SO ( n ) π a : G → U ( L 2 ( S 1 )) a > 0 [ π a ( x, A ) ϕ ] ( ξ ) = e 2 π iax · ξ ϕ ( A − 1 ξ ) Z ∞ trace ( π a ( x, A ) ˆ f ( x, A ) = 2 π f ( a )) a da 0 in polar coordinates Z ∞ ˆ X f ( a ) r,s i s − r e − i ( s α +( r − s ) θ ) J s − r (2 π a ρ ) a da f ( ρ , θ , α ) = 0 r,s ∈ Z ✓ cos α ◆ − sin α x = ρ (cos θ , sin θ ) , A = sin α cos α

  16. Explicit computations the problem of finding an optimal function is an infinite-dimensional SDP goal: reformulate and relax to a finite-dimensional SDP solve this rigorously on a computer

  17. When d f r,s ; k a 2 k e − π a 2 ˆ X f ( a ) r,s = k =0 and setting the right ˆ f ( a ) r,s to zero forces Z ∞ ˆ X f ( a ) r,s i s − r e − i ( s α +( r − s ) θ ) J s − r (2 π a ρ ) a da f ( ρ , θ , α ) = 0 r,s ∈ Z to become a polynomial times exponential If N e π a 2 ˆ X f ( a ) y r y s ∈ R [ a, y − N , . . . , y N ] r,s = − N is a sum of squares, then f is pos. type

  18. geometric condition f ( x, A )  0 if x 62 K � A K 2 π / 10 π / 10 α = 0 − π / 10 − 2 π / 10 Question: How to describe this set in general? Algorithm to determine {K − A K : A ∈ SO ( n ) } when K is polytope?

  19. complete SDP (with only a few minor mistakes)

  20. complete SDP (with only a few minor mistakes) continued

  21. A step back We need more training. binary sphere packings Γ = ( R n × { 1 , 2 } , ( x, r ) ∼ ( y, s ) ⇐ ⇒ x − y ∈ (0 , R r + R s ) w ( x, r ) = R n r · vol B n

  22. code bound If the matrix-valued function ✓ g 11 ( ρ ) ◆ g 12 ( ρ ) g ( ρ ) = g 12 ( ρ ) g 22 ( ρ ) with d Z ∞ f r,s ; k a 2 k e − π a 2 J ( n − 2) / 2 (2 π a ρ ) a n − 1 da X g rs ( ρ ) = 0 k =0 satisfies ⇣P d ⌘ k =0 f r,s ; k a 2 k r,s =1 , 2 is psd for all a ? a simple normalization condition involving w ? g rs ( ρ ) ≤ 0 if ρ ∈ [ R r + R s , ∞ ) ? Then α w ( G ) ≤ max { g 11 (0) , g 22 (0) }

  23. Much simpler than the pentagons Z ∞ ˆ X f ( a ) r,s i s − r e − i ( s α +( r − s ) θ ) J s − r (2 π a ρ ) a da f ( ρ , θ , α ) = 0 r,s ∈ Z d f r,s ; k a 2 k e − π a 2 ˆ X f ( a ) r,s = k =0 vs. d Z ∞ f r,s ; k a 2 k e − π a 2 J ( n − 2) / 2 (2 π a ρ ) a n − 1 da X g rs ( ρ ) = 0 k =0 it’s univariate (the function only depends on ρ ) ? no trigonometric part ? matrix sizes: only 2 × 2 ? geometric condition: simple quadratic inequality ?

  24. Rigorous computations right choice of polynomial basis is extremely important — using monomial basis fails badly, even for very small degrees k | L n/ 2 − 1 — our choice: | µ − 1 (2 π t ) k µ k : coefficient of L n/ 2 − 1 (2 π t ) with largest absolute value k — csdp : d ≤ 31 — SDPA-gmp with 256 bits of precision: d ≤ 51

  25. In order to get mathematical rigorous results: — perform post processing of the floating point solution — perturb to a rational solution — analyze quality-loss of this perturbation (by estimates of eigenvalues and condition numbers)

  26. 0 . 95 0 . 90 n = 2 0 . 85 0 . 80 n = 3 0 . 75 0 . 70 n = 4 0 . 65 0 . 60 n = 5 0 . 55 0 . 50 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 de Laat, Oliveira, V. (2012)

  27. Improving Cohn-Elkies bound 1. Adding valid inequalities (bounds on average contact numbers) 2. More flexible numerical method n lower bound Rogers Cohn-Elkies new bound 4 0 . 125 0 . 13127 0 . 13126 0 . 13081 5 0 . 08839 0 . 09987 0 . 09975 0 . 09955 6 0 . 07217 0 . 08112 0 . 08084 0 . 08070 7 0 . 0625 0 . 06981 0 . 06933 0 . 06926 density given as point density (= # centers per unit volume) density given as point density (= # centers per unit volume)

  28. back to the pentagons Kuperberg 2 (1992) α ∈ [0 . 92 , ?] 0 . 98 Oliveira, V. (2013) ? custom made C++ library for generating and analyzing SDPs with SOS constraints 14 13 24 1 1 ? geometric constraint modeled 03 2 by a mixture of sampling and SOS 2 0 20 0 02 3 30 3 4 4 42 31 0 . 98 can probably be improved 41 ?

  29. Tetrahedra? ? needs more automatization (also the harmonic analysis part) ? needs more theory for numerical optimization with SOS constraints (condition numbers, special numerical solvers) ? still a challenge

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend