lattice packings an upper bound on the number of perfect
play

Lattice packings: an upper bound on the number of perfect lattices - PowerPoint PPT Presentation

Lattice packings: an upper bound on the number of perfect lattices Wessel van Woerden, CWI, Amsterdam. 1 | 23 Sphere Packing Problem 1 | 23 Sphere Packing Problem 1 | 23 Sphere Packing Problem Only solved in dimensions 2 , 3 , 8 and 24 ...


  1. Lattice packings: an upper bound on the number of perfect lattices Wessel van Woerden, CWI, Amsterdam.

  2. 1 | 23 Sphere Packing Problem

  3. 1 | 23 Sphere Packing Problem

  4. 1 | 23 Sphere Packing Problem • Only solved in dimensions 2 , 3 , 8 and 24 ...

  5. 2 | 23 Lattice Packing Problem b 1 + b 2 b 2 0 b 1

  6. 2 | 23 Lattice Packing Problem b 1 + b 2 b 2 0 b 1 • Solved in dimensions ≤ 8 and 24 .

  7. 3 | 23 Solution space • Cone of positive definite quadratic forms:

  8. 4 | 23 Ryshkov Polyhedron • Spheres of radius at least 1 :

  9. 4 | 23 Ryshkov Polyhedron • Spheres of radius at least 1 : • Concave minimization problem = ⇒ optima at vertices.

  10. 4 | 23 Ryshkov Polyhedron • Spheres of radius at least 1 : • Concave minimization problem = ⇒ optima at vertices. • Finite number of non-similar vertices.

  11. 4 | 23 Ryshkov Polyhedron • Spheres of radius at least 1 : • Concave minimization problem = ⇒ optima at vertices. • Finite number of non-similar vertices. ← how many?

  12. 5 | 23 Voronoi’s Algorithm • How to solve the lattice packing problem in a fixed dimension: • Enumerate all non-similar vertices.

  13. 5 | 23 Voronoi’s Algorithm • How to solve the lattice packing problem in a fixed dimension: • Enumerate all non-similar vertices. • Pick the best one.

  14. 6 | 23 Space of quadratic forms • Let S d ⊂ R d × d be the space of real symmetric matrices.

  15. 6 | 23 Space of quadratic forms • Let S d ⊂ R d × d be the space of real symmetric matrices. • Dimension n := 1 2 d ( d + 1 ) .

  16. 6 | 23 Space of quadratic forms • Let S d ⊂ R d × d be the space of real symmetric matrices. • Dimension n := 1 2 d ( d + 1 ) . • We define the following inner product on S d : � A , B � := Tr ( A t B ) = � A ij B ij i , j

  17. 6 | 23 Space of quadratic forms • Let S d ⊂ R d × d be the space of real symmetric matrices. • Dimension n := 1 2 d ( d + 1 ) . • We define the following inner product on S d : � A , B � := Tr ( A t B ) = � A ij B ij i , j • Q ∈ S d defines a quadratic form by Q [ x ] := x t Qx = � Q , xx t � ∀ x ∈ R d

  18. 6 | 23 Space of quadratic forms • Let S d ⊂ R d × d be the space of real symmetric matrices. • Dimension n := 1 2 d ( d + 1 ) . • We define the following inner product on S d : � A , B � := Tr ( A t B ) = � A ij B ij i , j • Q ∈ S d defines a quadratic form by Q [ x ] := x t Qx = � Q , xx t � ∀ x ∈ R d • For a positive definite quadratic form (PQF) Q ∈ S d > 0 : λ ( Q ) := x ∈ Z d −{ 0 } Q [ x ] min Min ( Q ) := { x ∈ Z d : Q [ x ] = λ ( Q ) }

  19. 7 | 23 Hermite Constant • Lattice L = B Z d = ⇒ PQF Q = B t B ∈ S d > 0 .

  20. 7 | 23 Hermite Constant • Lattice L = B Z d = ⇒ PQF Q = B t B ∈ S d > 0 .

  21. 7 | 23 Hermite Constant • Lattice L = B Z d = ⇒ PQF Q = B t B ∈ S d > 0 . ∼ λ ( Q ) d / 2 ∼ det( Q ) 1 / 2

  22. 7 | 23 Hermite Constant • Lattice L = B Z d = ⇒ PQF Q = B t B ∈ S d > 0 . ∼ λ ( Q ) d / 2 ∼ det( Q ) 1 / 2 • Hermite invariant: λ ( Q ) (det Q ) 1 / d ∼ density ( L ) 2 / d γ ( Q ) =

  23. 7 | 23 Hermite Constant • Lattice L = B Z d = ⇒ PQF Q = B t B ∈ S d > 0 . ∼ λ ( Q ) d / 2 ∼ det( Q ) 1 / 2 • Hermite invariant: λ ( Q ) (det Q ) 1 / d ∼ density ( L ) 2 / d γ ( Q ) = • Lattice packing problem ⇔ determine Hermite’s constant: H d := sup γ ( Q ) Q ∈S d > 0

  24. 8 | 23 Ryshkov Polyhedra • For λ > 0 we define the Ryshkov Polyhedron P λ = { Q ∈ S d > 0 : λ ( Q ) ≥ λ }

  25. 8 | 23 Ryshkov Polyhedra • For λ > 0 we define the Ryshkov Polyhedron { Q ∈ S d : � Q , xx t � ≥ λ } ⊂ S d � P λ = > 0 x ∈ Z d \{ 0 }

  26. 8 | 23 Ryshkov Polyhedra • For λ > 0 we define the Ryshkov Polyhedron { Q ∈ S d : � Q , xx t � ≥ λ } ⊂ S d � P λ = > 0 x ∈ Z d \{ 0 } • Facets correspond to x ∈ Z d \ { 0 } .

  27. 8 | 23 Ryshkov Polyhedra • For λ > 0 we define the Ryshkov Polyhedron P λ = { Q ∈ S d > 0 : λ ( Q ) ≥ λ } • We have λ H d = Q ∈P λ det( Q ) 1 / d inf

  28. 8 | 23 Ryshkov Polyhedra • For λ > 0 we define the Ryshkov Polyhedron P λ = { Q ∈ S d > 0 : λ ( Q ) ≥ λ } • We have λ H d = Q ∈P λ det( Q ) 1 / d inf • Minkowski: det( Q ) 1 / d is (strictly) concave on S d > 0 = ⇒ Local optima at vertices of P λ .

  29. 9 | 23 Perfect forms • Q is perfect ⇔ Q is a vertex of P λ ( Q ) .

  30. 9 | 23 Perfect forms • Q is perfect ⇔ Q is a vertex of P λ ( Q ) . • Note that | Min Q | ≥ 2 n = d ( d + 1 )

  31. 10 | 23 Similarity • B and BU generate the same lattice for U ∈ GL d ( Z ) .

  32. 10 | 23 Similarity • B and BU generate the same lattice for U ∈ GL d ( Z ) . • Arithmetically equivalence: ∃ U s.t. Q ′ = U t QU .

  33. 10 | 23 Similarity • B and BU generate the same lattice for U ∈ GL d ( Z ) . • Arithmetically equivalence: ∃ U s.t. Q ′ = U t QU . • Note that λ 1 ( U t QU ) = λ 1 ( Q ) and det( U t QU ) = det( Q ) .

  34. 10 | 23 Similarity • B and BU generate the same lattice for U ∈ GL d ( Z ) . • Arithmetically equivalence: ∃ U s.t. Q ′ = U t QU . • Note that λ 1 ( U t QU ) = λ 1 ( Q ) and det( U t QU ) = det( Q ) . • Similarity: Arithmetical equivalence up to scaling.

  35. Perfect Forms: how many?

  36. 11 | 23 Number of perfect forms • The exact set of perfect forms is known up to dimension 8 . • For d ≥ 6 Voronoi’s Algorithm was used. d # non-similar Perfect forms 2 1 (Lagrange, 1773) 3 1 (Gauss, 1840) 4 2 (Korkine & Zolotarev, 1877) 5 3 (Korkine & Zolotarev, 1877) 6 7 (Barnes, 1957) 7 33 (Jaquet, 1993) 8 10916 (DSV, 2005) 9 ≥ 500.000 (DSV, 2005) ≥ 23.000.000 (vW, 2018)

  37. 12 | 23 An improved upper bound • p d := number of non-similar d -dimensional perfect forms.

  38. 12 | 23 An improved upper bound • p d := number of non-similar d -dimensional perfect forms. • Known bounds for p d . p d < e O ( d 4 log( d )) ( C. Soul´ e , 1998 ) e Ω( d ) < p d < e O ( d 3 log( d )) ( R. Bacher , 2017 )

  39. 12 | 23 An improved upper bound • p d := number of non-similar d -dimensional perfect forms. • Known bounds for p d . p d < e O ( d 4 log( d )) ( C. Soul´ e , 1998 ) e Ω( d ) < p d < e O ( d 3 log( d )) ( R. Bacher , 2017 ) Theorem (This talk) p d < e O ( d 2 log( d ))

  40. 13 | 23 Outer Normal Cones polyhedron inside cone = ⇒ subdivision of cone 1 4 2 3 1 2 3 4

  41. 13 | 23 Inner Normal Cones polyhedron inside cone = ⇒ subdivision of cone 4 3 2 1 1 4 2 3

  42. 14 | 23 Subdivision for d = 2 Figure: Subdivision by normal cones of Ryshkov Polyhedron.

  43. 15 | 23 Voronoi Domain Definition For a PQF Q ∈ S d > 0 its Voronoi Domain V ( Q ) is V ( Q ) := cone ( { xx t : x ∈ Min Q } ) ⊂ S d ≥ 0 .

  44. 15 | 23 Voronoi Domain Definition For a PQF Q ∈ S d > 0 its Voronoi Domain V ( Q ) is V ( Q ) := cone ( { xx t : x ∈ Min Q } ) ⊂ S d ≥ 0 . • Q is perfect ⇔ V ( Q ) is full dimensional.

  45. 16 | 23 Proof strategy ( 1 , 1 ) ( 3 , 2 ) ( 2 , 3 ) ( 2 , 1 ) ( 1 , 2 ) ( 3 , 1 ) ( 1 , 3 ) ( 1 , 0 ) ( 0 , 1 ) ( − 3 , 1 ) ( − 1 , 3 ) ( − 2 , 1 ) ( − 1 , 2 ) ( − 3 , 1 ) ( − 2 , 3 ) ( − 1 , 1 )

  46. 16 | 23 Proof strategy ( 1 , 1 ) ( 3 , 2 ) ( 2 , 3 ) ( 2 , 1 ) ( 1 , 2 ) Can’t fit many large ( 3 , 1 ) ( 1 , 3 ) Voronoi domains. ( 1 , 0 ) ( 0 , 1 ) ( − 3 , 1 ) ( − 1 , 3 ) ( − 2 , 1 ) ( − 1 , 2 ) ( − 3 , 1 ) ( − 2 , 3 ) ( − 1 , 1 )

  47. 16 | 23 Proof strategy ( 1 , 1 ) ( 3 , 2 ) ( 2 , 3 ) ( 2 , 1 ) ( 1 , 2 ) Can’t fit many large ( 3 , 1 ) ( 1 , 3 ) Voronoi domains. Each similariy-class has at least one ( 1 , 0 ) ( 0 , 1 ) large representative. ( − 3 , 1 ) ( − 1 , 3 ) ( − 2 , 1 ) ( − 1 , 2 ) ( − 3 , 1 ) ( − 2 , 3 ) ( − 1 , 1 )

  48. 16 | 23 Proof strategy ( 1 , 1 ) ( 3 , 2 ) ( 2 , 3 ) ( 2 , 1 ) ( 1 , 2 ) Can’t fit many large ( 3 , 1 ) ( 1 , 3 ) Voronoi domains. Each similariy-class has at least one ( 1 , 0 ) ( 0 , 1 ) large representative. = ⇒ Can’t have many similarity-classes. ( − 3 , 1 ) ( − 1 , 3 ) ( − 2 , 1 ) ( − 1 , 2 ) ( − 3 , 1 ) ( − 2 , 3 ) ( − 1 , 1 )

  49. 17 | 23 Volumetric argument • Find a complete set of representatives P d such that: � � S d Vol ( V ( Q )) ≥ ℓ d Vol ≤ u d ≥ 0 ∀ Q ∈ P d

  50. 17 | 23 Volumetric argument • Find a complete set of representatives P d such that: � � S d Vol ( V ( Q )) ≥ ℓ d Vol ≤ u d ≥ 0 ∀ Q ∈ P d • Then p d = | P d | ≤ u d ℓ d .

  51. 17 | 23 Volumetric argument • Find a complete set of representatives P d such that: � � S d Vol ( V ( Q )) ≥ ℓ d Vol ≤ u d ≥ 0 = o ( 1 ) ∀ Q ∈ P d • Then p d = | P d | ≤ u d ℓ d . • To quantify the volume we restrict to the half space T d := { Q ∈ S d : Tr ( Q ) = � Q , I d � ≤ 1 } .

  52. 18 | 23 Volume simplex a 2 a 1 a 3 n -dimensional simplex: n ! · | det( � a i , a j � ) i , j | 1 / 2 Volume = 1 0

  53. 19 | 23 Volume Voronoi domain • Tr ( xx t ) = x t x .

  54. 19 | 23 Volume Voronoi domain • Tr ( xx t ) = x t x . • Can look at subcone: w.l.o.g. Min Q = {± x 1 , . . . , ± x n } . x 2 x t 2 x t 2 x 2 x 1 x t x 3 x t 1 3 x t x t 1 x 1 3 x 3 V ( Q ) ∩ T d 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend