decorrelation estimates for the eigenlevels of random
play

Decorrelation estimates for the eigenlevels of random operators in - PowerPoint PPT Presentation

Decorrelation estimates for the eigenlevels of random operators in the localized regime F. Klopp Universit e Paris 13 and Institut Universitaire de France Conference on Spectral Theory Euler Institute, St Petersburg July 15th 2010 F.


  1. The Anderson model in the localized regime On ℓ 2 ( Z d ) , we consider the Anderson model  ω 1  1 0 ··· ··· 0 . H ω = − ∆ + V ω where V ω = ∑ γ ∈ Z d ω γ π γ and .   ω 2 1 1 .   − ∆ is the standard discrete Laplacian,  .  .   ω 3 0 1 1 .   π γ is the orthogonal projector on δ γ ,   . ... .   the random variables ( ω γ ) γ ∈ Z d are non . 0     ··· ω n − 1 0 0 1 1 trivial, i.i.d. bounded and admit a   ··· ··· ω n 0 0 1 bounded density. Well known : there exists a set, say I ⊂ R , such that, in I , the spectrum of H ω is localized. Pick E ∈ I and L ∈ N . Let Λ = Λ L = [ − L , L ] d ∩ Z d ⊂ Z d and H ω ( Λ ) = H ω | Λ (per. BC). Denote its eigenvalues by E 1 ( ω , Λ ) ≤ E 2 ( ω , Λ ) ≤ ··· ≤ E N ( ω , Λ ) . 1 Integrated density of states: N ( E ) = lim N max { j ; E j ( ω , Λ ) ≤ N } . N → ∞ Density of states ν ( E ) = N ′ ( E ) . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 3 / 16

  2. The Anderson model in the localized regime On ℓ 2 ( Z d ) , we consider the Anderson model  ω 1  1 0 ··· ··· 0 . H ω = − ∆ + V ω where V ω = ∑ γ ∈ Z d ω γ π γ and .   ω 2 1 1 .   − ∆ is the standard discrete Laplacian,  .  .   ω 3 0 1 1 .   π γ is the orthogonal projector on δ γ ,   . ... .   the random variables ( ω γ ) γ ∈ Z d are non . 0     ··· ω n − 1 0 0 1 1 trivial, i.i.d. bounded and admit a   ··· ··· ω n 0 0 1 bounded density. Well known : there exists a set, say I ⊂ R , such that, in I , the spectrum of H ω is localized. Pick E ∈ I and L ∈ N . Let Λ = Λ L = [ − L , L ] d ∩ Z d ⊂ Z d and H ω ( Λ ) = H ω | Λ (per. BC). Denote its eigenvalues by E 1 ( ω , Λ ) ≤ E 2 ( ω , Λ ) ≤ ··· ≤ E N ( ω , Λ ) . 1 Integrated density of states: N ( E ) = lim N max { j ; E j ( ω , Λ ) ≤ N } . N → ∞ Density of states ν ( E ) = N ′ ( E ) . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 3 / 16

  3. The Anderson model in the localized regime On ℓ 2 ( Z d ) , we consider the Anderson model  ω 1  1 0 ··· ··· 0 . H ω = − ∆ + V ω where V ω = ∑ γ ∈ Z d ω γ π γ and .   ω 2 1 1 .   − ∆ is the standard discrete Laplacian,  .  .   ω 3 0 1 1 .   π γ is the orthogonal projector on δ γ ,   . ... .   the random variables ( ω γ ) γ ∈ Z d are non . 0     ··· ω n − 1 0 0 1 1 trivial, i.i.d. bounded and admit a   ··· ··· ω n 0 0 1 bounded density. Well known : there exists a set, say I ⊂ R , such that, in I , the spectrum of H ω is localized. Pick E ∈ I and L ∈ N . Let Λ = Λ L = [ − L , L ] d ∩ Z d ⊂ Z d and H ω ( Λ ) = H ω | Λ (per. BC). Denote its eigenvalues by E 1 ( ω , Λ ) ≤ E 2 ( ω , Λ ) ≤ ··· ≤ E N ( ω , Λ ) . 1 Integrated density of states: N ( E ) = lim N max { j ; E j ( ω , Λ ) ≤ N } . N → ∞ Density of states ν ( E ) = N ′ ( E ) . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 3 / 16

  4. The Anderson model in the localized regime On ℓ 2 ( Z d ) , we consider the Anderson model  ω 1  1 0 ··· ··· 0 . H ω = − ∆ + V ω where V ω = ∑ γ ∈ Z d ω γ π γ and .   ω 2 1 1 .   − ∆ is the standard discrete Laplacian,  .  .   ω 3 0 1 1 .   π γ is the orthogonal projector on δ γ ,   . ... .   the random variables ( ω γ ) γ ∈ Z d are non . 0     ··· ω n − 1 0 0 1 1 trivial, i.i.d. bounded and admit a   ··· ··· ω n 0 0 1 bounded density. Well known : there exists a set, say I ⊂ R , such that, in I , the spectrum of H ω is localized. Pick E ∈ I and L ∈ N . Let Λ = Λ L = [ − L , L ] d ∩ Z d ⊂ Z d and H ω ( Λ ) = H ω | Λ (per. BC). Denote its eigenvalues by E 1 ( ω , Λ ) ≤ E 2 ( ω , Λ ) ≤ ··· ≤ E N ( ω , Λ ) . 1 Integrated density of states: N ( E ) = lim N max { j ; E j ( ω , Λ ) ≤ N } . N → ∞ Density of states ν ( E ) = N ′ ( E ) . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 3 / 16

  5. Local level statistics near E : N ∑ Ξ ( ξ , E , ω , Λ ) = δ ξ j ( E , ω , Λ ) ( ξ ) where ξ j ( E , ω , Λ ) = | Λ | ν ( E )( E j ( ω , Λ ) − E ) . j = 1 Theorem (Molchanov,Minami,Germinet-K.) Assume that ν ( E ) > 0 . When | Λ | → + ∞ , the point process Ξ ( , ω , Λ ) converges weakly to a Poisson process on R with intensity the Lebesgue measure. Question: pick E 0 ∈ I and E ′ 0 ∈ I such that E 0 � = E ′ 0 , ν ( E 0 ) > 0 and ν ( E ′ 0 ) > 0; Are the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) asymptotically independent? Not much known about this question for random Schr¨ odinger operators. Results for random matrices. The answer may be model dependent:   ω 1 0 0 ··· 0   ω 1 0 ··· 0 0 ω 1 + 1 0 ··· 0 .   .    . .  ω 2 0 0 . . .     ω 2 . 0 0 .  .    ... .    .  ... . 0 .     . 0   0 ··· 0 ω 2 n 0 0 ··· 0 ω n + 1 F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 4 / 16

  6. Local level statistics near E : N ∑ Ξ ( ξ , E , ω , Λ ) = δ ξ j ( E , ω , Λ ) ( ξ ) where ξ j ( E , ω , Λ ) = | Λ | ν ( E )( E j ( ω , Λ ) − E ) . j = 1 Theorem (Molchanov,Minami,Germinet-K.) Assume that ν ( E ) > 0 . When | Λ | → + ∞ , the point process Ξ ( , ω , Λ ) converges weakly to a Poisson process on R with intensity the Lebesgue measure. Question: pick E 0 ∈ I and E ′ 0 ∈ I such that E 0 � = E ′ 0 , ν ( E 0 ) > 0 and ν ( E ′ 0 ) > 0; Are the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) asymptotically independent? Not much known about this question for random Schr¨ odinger operators. Results for random matrices. The answer may be model dependent:   ω 1 0 0 ··· 0   ω 1 0 ··· 0 0 ω 1 + 1 0 ··· 0 .   .    . .  ω 2 0 0 . . .     ω 2 . 0 0 .  .    ... .    .  ... . 0 .     . 0   0 ··· 0 ω 2 n 0 0 ··· 0 ω n + 1 F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 4 / 16

  7. Local level statistics near E : N ∑ Ξ ( ξ , E , ω , Λ ) = δ ξ j ( E , ω , Λ ) ( ξ ) where ξ j ( E , ω , Λ ) = | Λ | ν ( E )( E j ( ω , Λ ) − E ) . j = 1 Theorem (Molchanov,Minami,Germinet-K.) Assume that ν ( E ) > 0 . When | Λ | → + ∞ , the point process Ξ ( , ω , Λ ) converges weakly to a Poisson process on R with intensity the Lebesgue measure. Question: pick E 0 ∈ I and E ′ 0 ∈ I such that E 0 � = E ′ 0 , ν ( E 0 ) > 0 and ν ( E ′ 0 ) > 0; Are the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) asymptotically independent? Not much known about this question for random Schr¨ odinger operators. Results for random matrices. The answer may be model dependent:   ω 1 0 0 ··· 0   ω 1 0 ··· 0 0 ω 1 + 1 0 ··· 0 .   .    . .  ω 2 0 0 . . .     ω 2 . 0 0 .  .    ... .    .  ... . 0 .     . 0   0 ··· 0 ω 2 n 0 0 ··· 0 ω n + 1 F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 4 / 16

  8. Local level statistics near E : N ∑ Ξ ( ξ , E , ω , Λ ) = δ ξ j ( E , ω , Λ ) ( ξ ) where ξ j ( E , ω , Λ ) = | Λ | ν ( E )( E j ( ω , Λ ) − E ) . j = 1 Theorem (Molchanov,Minami,Germinet-K.) Assume that ν ( E ) > 0 . When | Λ | → + ∞ , the point process Ξ ( , ω , Λ ) converges weakly to a Poisson process on R with intensity the Lebesgue measure. Question: pick E 0 ∈ I and E ′ 0 ∈ I such that E 0 � = E ′ 0 , ν ( E 0 ) > 0 and ν ( E ′ 0 ) > 0; Are the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) asymptotically independent? Not much known about this question for random Schr¨ odinger operators. Results for random matrices. The answer may be model dependent:   ω 1 0 0 ··· 0   ω 1 0 ··· 0 0 ω 1 + 1 0 ··· 0 .   .    . .  ω 2 0 0 . . .     ω 2 . 0 0 .  .    ... .    .  ... . 0 .     . 0   0 ··· 0 ω 2 n 0 0 ··· 0 ω n + 1 F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 4 / 16

  9. Local level statistics near E : N ∑ Ξ ( ξ , E , ω , Λ ) = δ ξ j ( E , ω , Λ ) ( ξ ) where ξ j ( E , ω , Λ ) = | Λ | ν ( E )( E j ( ω , Λ ) − E ) . j = 1 Theorem (Molchanov,Minami,Germinet-K.) Assume that ν ( E ) > 0 . When | Λ | → + ∞ , the point process Ξ ( , ω , Λ ) converges weakly to a Poisson process on R with intensity the Lebesgue measure. Question: pick E 0 ∈ I and E ′ 0 ∈ I such that E 0 � = E ′ 0 , ν ( E 0 ) > 0 and ν ( E ′ 0 ) > 0; Are the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) asymptotically independent? Not much known about this question for random Schr¨ odinger operators. Results for random matrices. The answer may be model dependent:   ω 1 0 0 ··· 0   ω 1 0 ··· 0 0 ω 1 + 1 0 ··· 0 .   .    . .  ω 2 0 0 . . .     ω 2 . 0 0 .  .    ... .    .  ... . 0 .     . 0   0 ··· 0 ω 2 n 0 0 ··· 0 ω n + 1 F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 4 / 16

  10. Local level statistics near E : N ∑ Ξ ( ξ , E , ω , Λ ) = δ ξ j ( E , ω , Λ ) ( ξ ) where ξ j ( E , ω , Λ ) = | Λ | ν ( E )( E j ( ω , Λ ) − E ) . j = 1 Theorem (Molchanov,Minami,Germinet-K.) Assume that ν ( E ) > 0 . When | Λ | → + ∞ , the point process Ξ ( , ω , Λ ) converges weakly to a Poisson process on R with intensity the Lebesgue measure. Question: pick E 0 ∈ I and E ′ 0 ∈ I such that E 0 � = E ′ 0 , ν ( E 0 ) > 0 and ν ( E ′ 0 ) > 0; Are the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) asymptotically independent? Not much known about this question for random Schr¨ odinger operators. Results for random matrices. The answer may be model dependent:   ω 1 0 0 ··· 0   ω 1 0 ··· 0 0 ω 1 + 1 0 ··· 0 .   .    . .  ω 2 0 0 . . .     ω 2 . 0 0 .  .    ... .    .  ... . 0 .     . 0   0 ··· 0 ω 2 n 0 0 ··· 0 ω n + 1 F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 4 / 16

  11. Local level statistics near E : N ∑ Ξ ( ξ , E , ω , Λ ) = δ ξ j ( E , ω , Λ ) ( ξ ) where ξ j ( E , ω , Λ ) = | Λ | ν ( E )( E j ( ω , Λ ) − E ) . j = 1 Theorem (Molchanov,Minami,Germinet-K.) Assume that ν ( E ) > 0 . When | Λ | → + ∞ , the point process Ξ ( , ω , Λ ) converges weakly to a Poisson process on R with intensity the Lebesgue measure. Question: pick E 0 ∈ I and E ′ 0 ∈ I such that E 0 � = E ′ 0 , ν ( E 0 ) > 0 and ν ( E ′ 0 ) > 0; Are the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) asymptotically independent? Not much known about this question for random Schr¨ odinger operators. Results for random matrices. The answer may be model dependent:   ω 1 0 0 ··· 0   ω 1 0 ··· 0 0 ω 1 + 1 0 ··· 0 .   .    . .  ω 2 0 0 . . .     ω 2 . 0 0 .  .    ... .    .  ... . 0 .     . 0   0 ··· 0 ω 2 n 0 0 ··· 0 ω n + 1 F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 4 / 16

  12. Local level statistics near E : N ∑ Ξ ( ξ , E , ω , Λ ) = δ ξ j ( E , ω , Λ ) ( ξ ) where ξ j ( E , ω , Λ ) = | Λ | ν ( E )( E j ( ω , Λ ) − E ) . j = 1 Theorem (Molchanov,Minami,Germinet-K.) Assume that ν ( E ) > 0 . When | Λ | → + ∞ , the point process Ξ ( , ω , Λ ) converges weakly to a Poisson process on R with intensity the Lebesgue measure. Question: pick E 0 ∈ I and E ′ 0 ∈ I such that E 0 � = E ′ 0 , ν ( E 0 ) > 0 and ν ( E ′ 0 ) > 0; Are the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) asymptotically independent? Not much known about this question for random Schr¨ odinger operators. Results for random matrices. The answer may be model dependent:   ω 1 0 0 ··· 0   ω 1 0 ··· 0 0 ω 1 + 1 0 ··· 0 .   .    . .  ω 2 0 0 . . .     ω 2 . 0 0 .  .    ... .    .  ... . 0 .     . 0   0 ··· 0 ω 2 n 0 0 ··· 0 ω n + 1 F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 4 / 16

  13. Local level statistics near E : N ∑ Ξ ( ξ , E , ω , Λ ) = δ ξ j ( E , ω , Λ ) ( ξ ) where ξ j ( E , ω , Λ ) = | Λ | ν ( E )( E j ( ω , Λ ) − E ) . j = 1 Theorem (Molchanov,Minami,Germinet-K.) Assume that ν ( E ) > 0 . When | Λ | → + ∞ , the point process Ξ ( , ω , Λ ) converges weakly to a Poisson process on R with intensity the Lebesgue measure. Question: pick E 0 ∈ I and E ′ 0 ∈ I such that E 0 � = E ′ 0 , ν ( E 0 ) > 0 and ν ( E ′ 0 ) > 0; Are the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) asymptotically independent? Not much known about this question for random Schr¨ odinger operators. Results for random matrices. The answer may be model dependent:   ω 1 0 0 ··· 0   ω 1 0 ··· 0 0 ω 1 + 1 0 ··· 0 .   .    . .  ω 2 0 0 . . .     ω 2 . 0 0 .  .    ... .    .  ... . 0 .     . 0   0 ··· 0 ω 2 n 0 0 ··· 0 ω n + 1 F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 4 / 16

  14. The independence Theorem (Ge-Kl,Kl) Assume that the dimension d = 1 .When | Λ | → + ∞ , the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) converge weakly respectively to two independent Poisson processes on R with intensity the Lebesgue measure. That is, for U + ⊂ R and U − ⊂ R compact intervals and { k + , k − } ∈ N × N , one has �� � �� Λ → Z d e −| U + | | U + | k + · e −| U − | | U − | k − # { j ; ξ j ( E 0 , ω , Λ ) ∈ U + } = k + ω ; → . P # { j ; ξ j ( E ′ 0 , ω , Λ ) ∈ U − } = k − k + ! k − ! Theorem (Ge-Kl,Kl) Pick E 0 ∈ I and E ′ 0 ∈ I such that | E 0 − E ′ 0 | > 2 d, ν ( E 0 ) > 0 and ν ( E ′ 0 ) > 0 . When | Λ | → + ∞ , the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) converge weakly respectively to two independent Poisson processes on R with intensity the Lebesgue measure. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 5 / 16

  15. The independence Theorem (Ge-Kl,Kl) Assume that the dimension d = 1 .When | Λ | → + ∞ , the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) converge weakly respectively to two independent Poisson processes on R with intensity the Lebesgue measure. That is, for U + ⊂ R and U − ⊂ R compact intervals and { k + , k − } ∈ N × N , one has �� � �� Λ → Z d e −| U + | | U + | k + · e −| U − | | U − | k − # { j ; ξ j ( E 0 , ω , Λ ) ∈ U + } = k + ω ; → . P # { j ; ξ j ( E ′ 0 , ω , Λ ) ∈ U − } = k − k + ! k − ! Theorem (Ge-Kl,Kl) Pick E 0 ∈ I and E ′ 0 ∈ I such that | E 0 − E ′ 0 | > 2 d, ν ( E 0 ) > 0 and ν ( E ′ 0 ) > 0 . When | Λ | → + ∞ , the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) converge weakly respectively to two independent Poisson processes on R with intensity the Lebesgue measure. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 5 / 16

  16. The independence Theorem (Ge-Kl,Kl) Assume that the dimension d = 1 .When | Λ | → + ∞ , the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) converge weakly respectively to two independent Poisson processes on R with intensity the Lebesgue measure. That is, for U + ⊂ R and U − ⊂ R compact intervals and { k + , k − } ∈ N × N , one has �� � �� Λ → Z d e −| U + | | U + | k + · e −| U − | | U − | k − # { j ; ξ j ( E 0 , ω , Λ ) ∈ U + } = k + ω ; → . P # { j ; ξ j ( E ′ 0 , ω , Λ ) ∈ U − } = k − k + ! k − ! Theorem (Ge-Kl,Kl) Pick E 0 ∈ I and E ′ 0 ∈ I such that | E 0 − E ′ 0 | > 2 d, ν ( E 0 ) > 0 and ν ( E ′ 0 ) > 0 . When | Λ | → + ∞ , the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) converge weakly respectively to two independent Poisson processes on R with intensity the Lebesgue measure. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 5 / 16

  17. The independence Theorem (Ge-Kl,Kl) Assume that the dimension d = 1 .When | Λ | → + ∞ , the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) converge weakly respectively to two independent Poisson processes on R with intensity the Lebesgue measure. That is, for U + ⊂ R and U − ⊂ R compact intervals and { k + , k − } ∈ N × N , one has �� � �� Λ → Z d e −| U + | | U + | k + · e −| U − | | U − | k − # { j ; ξ j ( E 0 , ω , Λ ) ∈ U + } = k + ω ; → . P # { j ; ξ j ( E ′ 0 , ω , Λ ) ∈ U − } = k − k + ! k − ! Theorem (Ge-Kl,Kl) Pick E 0 ∈ I and E ′ 0 ∈ I such that | E 0 − E ′ 0 | > 2 d, ν ( E 0 ) > 0 and ν ( E ′ 0 ) > 0 . When | Λ | → + ∞ , the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) converge weakly respectively to two independent Poisson processes on R with intensity the Lebesgue measure. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 5 / 16

  18. The independence Theorem (Ge-Kl,Kl) Assume that the dimension d = 1 .When | Λ | → + ∞ , the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) converge weakly respectively to two independent Poisson processes on R with intensity the Lebesgue measure. That is, for U + ⊂ R and U − ⊂ R compact intervals and { k + , k − } ∈ N × N , one has �� � �� Λ → Z d e −| U + | | U + | k + · e −| U − | | U − | k − # { j ; ξ j ( E 0 , ω , Λ ) ∈ U + } = k + ω ; → . P # { j ; ξ j ( E ′ 0 , ω , Λ ) ∈ U − } = k − k + ! k − ! Theorem (Ge-Kl,Kl) Pick E 0 ∈ I and E ′ 0 ∈ I such that | E 0 − E ′ 0 | > 2 d, ν ( E 0 ) > 0 and ν ( E ′ 0 ) > 0 . When | Λ | → + ∞ , the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) converge weakly respectively to two independent Poisson processes on R with intensity the Lebesgue measure. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 5 / 16

  19. The independence Theorem (Ge-Kl,Kl) Assume that the dimension d = 1 .When | Λ | → + ∞ , the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) converge weakly respectively to two independent Poisson processes on R with intensity the Lebesgue measure. That is, for U + ⊂ R and U − ⊂ R compact intervals and { k + , k − } ∈ N × N , one has �� � �� Λ → Z d e −| U + | | U + | k + · e −| U − | | U − | k − # { j ; ξ j ( E 0 , ω , Λ ) ∈ U + } = k + ω ; → . P # { j ; ξ j ( E ′ 0 , ω , Λ ) ∈ U − } = k − k + ! k − ! Theorem (Ge-Kl,Kl) Pick E 0 ∈ I and E ′ 0 ∈ I such that | E 0 − E ′ 0 | > 2 d, ν ( E 0 ) > 0 and ν ( E ′ 0 ) > 0 . When | Λ | → + ∞ , the point processes Ξ ( E 0 , ω , Λ ) and Ξ ( E ′ 0 , ω , Λ ) converge weakly respectively to two independent Poisson processes on R with intensity the Lebesgue measure. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 5 / 16

  20. The decorrelation lemmas Lemma (Kl) For the discrete Anderson model , fix α ∈ ( 0 , 1 ) , β ∈ ( 1 / 2 , 1 ) and { E 0 , E ′ 0 } ⊂ I s.t. | E 0 − E ′ 0 | > 2 d, for any c > 0 , there exists C > 0 such that, for L ≥ 3 and cL α ≤ ℓ ≤ L α / c, one has �� σ ( H ω ( Λ ℓ )) ∩ ( E 0 + L − d ( − 1 , 1 )) � = / �� 0 , ≤ C ( ℓ/ L ) 2 d e ( log L ) β . P σ ( H ω ( Λ ℓ )) ∩ ( E ′ 0 + L − d ( − 1 , 1 )) � = / 0 Lemma (Kl) Assume d = 1 . For the discrete Anderson model, for α ∈ ( 0 , 1 ) and { E 0 , E ′ 0 } ⊂ I s.t. 0 , for any c > 0 , there exists C > 0 such that, for L ≥ 3 and cL α ≤ ℓ ≤ L α / c, E 0 � = E ′ the result of the previous theorem holds. Another decorrelation estimate: the Minami estimate Theorem (Min, GV, BHS, CGK) For J ⊂ K, one has E [ tr [ 1 J ( H ω ( Λ ))] · ( tr [ 1 K ( H ω ( Λ ))] − 1 )] ≤ C | J || K || Λ | 2 . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 6 / 16

  21. The decorrelation lemmas Lemma (Kl) For the discrete Anderson model , fix α ∈ ( 0 , 1 ) , β ∈ ( 1 / 2 , 1 ) and { E 0 , E ′ 0 } ⊂ I s.t. | E 0 − E ′ 0 | > 2 d, for any c > 0 , there exists C > 0 such that, for L ≥ 3 and cL α ≤ ℓ ≤ L α / c, one has �� σ ( H ω ( Λ ℓ )) ∩ ( E 0 + L − d ( − 1 , 1 )) � = / �� 0 , ≤ C ( ℓ/ L ) 2 d e ( log L ) β . P σ ( H ω ( Λ ℓ )) ∩ ( E ′ 0 + L − d ( − 1 , 1 )) � = / 0 Lemma (Kl) Assume d = 1 . For the discrete Anderson model, for α ∈ ( 0 , 1 ) and { E 0 , E ′ 0 } ⊂ I s.t. 0 , for any c > 0 , there exists C > 0 such that, for L ≥ 3 and cL α ≤ ℓ ≤ L α / c, E 0 � = E ′ the result of the previous theorem holds. Another decorrelation estimate: the Minami estimate Theorem (Min, GV, BHS, CGK) For J ⊂ K, one has E [ tr [ 1 J ( H ω ( Λ ))] · ( tr [ 1 K ( H ω ( Λ ))] − 1 )] ≤ C | J || K || Λ | 2 . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 6 / 16

  22. The decorrelation lemmas Lemma (Kl) For the discrete Anderson model , fix α ∈ ( 0 , 1 ) , β ∈ ( 1 / 2 , 1 ) and { E 0 , E ′ 0 } ⊂ I s.t. | E 0 − E ′ 0 | > 2 d, for any c > 0 , there exists C > 0 such that, for L ≥ 3 and cL α ≤ ℓ ≤ L α / c, one has �� σ ( H ω ( Λ ℓ )) ∩ ( E 0 + L − d ( − 1 , 1 )) � = / �� 0 , ≤ C ( ℓ/ L ) 2 d e ( log L ) β . P σ ( H ω ( Λ ℓ )) ∩ ( E ′ 0 + L − d ( − 1 , 1 )) � = / 0 Lemma (Kl) Assume d = 1 . For the discrete Anderson model, for α ∈ ( 0 , 1 ) and { E 0 , E ′ 0 } ⊂ I s.t. 0 , for any c > 0 , there exists C > 0 such that, for L ≥ 3 and cL α ≤ ℓ ≤ L α / c, E 0 � = E ′ the result of the previous theorem holds. Another decorrelation estimate: the Minami estimate Theorem (Min, GV, BHS, CGK) For J ⊂ K, one has E [ tr [ 1 J ( H ω ( Λ ))] · ( tr [ 1 K ( H ω ( Λ ))] − 1 )] ≤ C | J || K || Λ | 2 . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 6 / 16

  23. The decorrelation lemmas Lemma (Kl) For the discrete Anderson model , fix α ∈ ( 0 , 1 ) , β ∈ ( 1 / 2 , 1 ) and { E 0 , E ′ 0 } ⊂ I s.t. | E 0 − E ′ 0 | > 2 d, for any c > 0 , there exists C > 0 such that, for L ≥ 3 and cL α ≤ ℓ ≤ L α / c, one has �� σ ( H ω ( Λ ℓ )) ∩ ( E 0 + L − d ( − 1 , 1 )) � = / �� 0 , ≤ C ( ℓ/ L ) 2 d e ( log L ) β . P σ ( H ω ( Λ ℓ )) ∩ ( E ′ 0 + L − d ( − 1 , 1 )) � = / 0 Lemma (Kl) Assume d = 1 . For the discrete Anderson model, for α ∈ ( 0 , 1 ) and { E 0 , E ′ 0 } ⊂ I s.t. 0 , for any c > 0 , there exists C > 0 such that, for L ≥ 3 and cL α ≤ ℓ ≤ L α / c, E 0 � = E ′ the result of the previous theorem holds. Another decorrelation estimate: the Minami estimate Theorem (Min, GV, BHS, CGK) For J ⊂ K, one has E [ tr [ 1 J ( H ω ( Λ ))] · ( tr [ 1 K ( H ω ( Λ ))] − 1 )] ≤ C | J || K || Λ | 2 . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 6 / 16

  24. The decorrelation lemmas Lemma (Kl) For the discrete Anderson model , fix α ∈ ( 0 , 1 ) , β ∈ ( 1 / 2 , 1 ) and { E 0 , E ′ 0 } ⊂ I s.t. | E 0 − E ′ 0 | > 2 d, for any c > 0 , there exists C > 0 such that, for L ≥ 3 and cL α ≤ ℓ ≤ L α / c, one has �� σ ( H ω ( Λ ℓ )) ∩ ( E 0 + L − d ( − 1 , 1 )) � = / �� 0 , ≤ C ( ℓ/ L ) 2 d e ( log L ) β . P σ ( H ω ( Λ ℓ )) ∩ ( E ′ 0 + L − d ( − 1 , 1 )) � = / 0 Lemma (Kl) Assume d = 1 . For the discrete Anderson model, for α ∈ ( 0 , 1 ) and { E 0 , E ′ 0 } ⊂ I s.t. 0 , for any c > 0 , there exists C > 0 such that, for L ≥ 3 and cL α ≤ ℓ ≤ L α / c, E 0 � = E ′ the result of the previous theorem holds. Another decorrelation estimate: the Minami estimate Theorem (Min, GV, BHS, CGK) For J ⊂ K, one has E [ tr [ 1 J ( H ω ( Λ ))] · ( tr [ 1 K ( H ω ( Λ ))] − 1 )] ≤ C | J || K || Λ | 2 . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 6 / 16

  25. The decorrelation lemmas Lemma (Kl) For the discrete Anderson model , fix α ∈ ( 0 , 1 ) , β ∈ ( 1 / 2 , 1 ) and { E 0 , E ′ 0 } ⊂ I s.t. | E 0 − E ′ 0 | > 2 d, for any c > 0 , there exists C > 0 such that, for L ≥ 3 and cL α ≤ ℓ ≤ L α / c, one has �� σ ( H ω ( Λ ℓ )) ∩ ( E 0 + L − d ( − 1 , 1 )) � = / �� 0 , ≤ C ( ℓ/ L ) 2 d e ( log L ) β . P σ ( H ω ( Λ ℓ )) ∩ ( E ′ 0 + L − d ( − 1 , 1 )) � = / 0 Lemma (Kl) Assume d = 1 . For the discrete Anderson model, for α ∈ ( 0 , 1 ) and { E 0 , E ′ 0 } ⊂ I s.t. 0 , for any c > 0 , there exists C > 0 such that, for L ≥ 3 and cL α ≤ ℓ ≤ L α / c, E 0 � = E ′ the result of the previous theorem holds. Another decorrelation estimate: the Minami estimate Theorem (Min, GV, BHS, CGK) For J ⊂ K, one has E [ tr [ 1 J ( H ω ( Λ ))] · ( tr [ 1 K ( H ω ( Λ ))] − 1 )] ≤ C | J || K || Λ | 2 . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 6 / 16

  26. The decorrelation lemmas Lemma (Kl) For the discrete Anderson model , fix α ∈ ( 0 , 1 ) , β ∈ ( 1 / 2 , 1 ) and { E 0 , E ′ 0 } ⊂ I s.t. | E 0 − E ′ 0 | > 2 d, for any c > 0 , there exists C > 0 such that, for L ≥ 3 and cL α ≤ ℓ ≤ L α / c, one has �� σ ( H ω ( Λ ℓ )) ∩ ( E 0 + L − d ( − 1 , 1 )) � = / �� 0 , ≤ C ( ℓ/ L ) 2 d e ( log L ) β . P σ ( H ω ( Λ ℓ )) ∩ ( E ′ 0 + L − d ( − 1 , 1 )) � = / 0 Lemma (Kl) Assume d = 1 . For the discrete Anderson model, for α ∈ ( 0 , 1 ) and { E 0 , E ′ 0 } ⊂ I s.t. 0 , for any c > 0 , there exists C > 0 such that, for L ≥ 3 and cL α ≤ ℓ ≤ L α / c, E 0 � = E ′ the result of the previous theorem holds. Another decorrelation estimate: the Minami estimate Theorem (Min, GV, BHS, CGK) For J ⊂ K, one has E [ tr [ 1 J ( H ω ( Λ ))] · ( tr [ 1 K ( H ω ( Λ ))] − 1 )] ≤ C | J || K || Λ | 2 . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 6 / 16

  27. The decorrelation lemmas Lemma (Kl) For the discrete Anderson model , fix α ∈ ( 0 , 1 ) , β ∈ ( 1 / 2 , 1 ) and { E 0 , E ′ 0 } ⊂ I s.t. | E 0 − E ′ 0 | > 2 d, for any c > 0 , there exists C > 0 such that, for L ≥ 3 and cL α ≤ ℓ ≤ L α / c, one has �� σ ( H ω ( Λ ℓ )) ∩ ( E 0 + L − d ( − 1 , 1 )) � = / �� 0 , ≤ C ( ℓ/ L ) 2 d e ( log L ) β . P σ ( H ω ( Λ ℓ )) ∩ ( E ′ 0 + L − d ( − 1 , 1 )) � = / 0 Lemma (Kl) Assume d = 1 . For the discrete Anderson model, for α ∈ ( 0 , 1 ) and { E 0 , E ′ 0 } ⊂ I s.t. 0 , for any c > 0 , there exists C > 0 such that, for L ≥ 3 and cL α ≤ ℓ ≤ L α / c, E 0 � = E ′ the result of the previous theorem holds. Another decorrelation estimate: the Minami estimate Theorem (Min, GV, BHS, CGK) For J ⊂ K, one has E [ tr [ 1 J ( H ω ( Λ ))] · ( tr [ 1 K ( H ω ( Λ ))] − 1 )] ≤ C | J || K || Λ | 2 . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 6 / 16

  28. The decorrelation lemmas Lemma (Kl) For the discrete Anderson model , fix α ∈ ( 0 , 1 ) , β ∈ ( 1 / 2 , 1 ) and { E 0 , E ′ 0 } ⊂ I s.t. | E 0 − E ′ 0 | > 2 d, for any c > 0 , there exists C > 0 such that, for L ≥ 3 and cL α ≤ ℓ ≤ L α / c, one has �� σ ( H ω ( Λ ℓ )) ∩ ( E 0 + L − d ( − 1 , 1 )) � = / �� 0 , ≤ C ( ℓ/ L ) 2 d e ( log L ) β . P σ ( H ω ( Λ ℓ )) ∩ ( E ′ 0 + L − d ( − 1 , 1 )) � = / 0 Lemma (Kl) Assume d = 1 . For the discrete Anderson model, for α ∈ ( 0 , 1 ) and { E 0 , E ′ 0 } ⊂ I s.t. 0 , for any c > 0 , there exists C > 0 such that, for L ≥ 3 and cL α ≤ ℓ ≤ L α / c, E 0 � = E ′ the result of the previous theorem holds. Another decorrelation estimate: the Minami estimate Theorem (Min, GV, BHS, CGK) For J ⊂ K, one has E [ tr [ 1 J ( H ω ( Λ ))] · ( tr [ 1 K ( H ω ( Λ ))] − 1 )] ≤ C | J || K || Λ | 2 . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 6 / 16

  29. Basic idea of the proof of decorrelation lemmas Let J L = E 0 + L − d ( − 1 , 1 ) and J ′ L = E ′ 0 + L − d ( − 1 , 1 ) . By Minami’s estimate # [ σ ( H ω ( Λ ℓ )) ∩ J L ] ≥ 2 or # [ σ ( H ω ( Λ ℓ )) ∩ J ′ ≤ C ( ℓ/ L ) 2 d � � P L ] ≥ 2 # [ σ ( H ω ( Λ ℓ )) ∩ J L ] = 1 , # [ σ ( H ω ( Λ ℓ )) ∩ J ′ � � If P 0 = P L ] = 1 , suffices to show that P 0 ≤ C ( ℓ/ L ) 2 d e ( log L ) β . Let E j ( ω ) and E k ( ω ) be the eigenvalues resp. in J L and J ′ L . Need to show that they don’t vary “synchronously”. Basic idea: find random variables ( ω γ , ω γ ′ ) such that ψ : ( ω γ , ω γ ′ ) �→ ( E j ( ω ) , E k ( ω )) be a local diffeomorphism. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 7 / 16

  30. Basic idea of the proof of decorrelation lemmas Let J L = E 0 + L − d ( − 1 , 1 ) and J ′ L = E ′ 0 + L − d ( − 1 , 1 ) . By Minami’s estimate # [ σ ( H ω ( Λ ℓ )) ∩ J L ] ≥ 2 or # [ σ ( H ω ( Λ ℓ )) ∩ J ′ ≤ C ( ℓ/ L ) 2 d � � P L ] ≥ 2 # [ σ ( H ω ( Λ ℓ )) ∩ J L ] = 1 , # [ σ ( H ω ( Λ ℓ )) ∩ J ′ � � If P 0 = P L ] = 1 , suffices to show that P 0 ≤ C ( ℓ/ L ) 2 d e ( log L ) β . Let E j ( ω ) and E k ( ω ) be the eigenvalues resp. in J L and J ′ L . Need to show that they don’t vary “synchronously”. Basic idea: find random variables ( ω γ , ω γ ′ ) such that ψ : ( ω γ , ω γ ′ ) �→ ( E j ( ω ) , E k ( ω )) be a local diffeomorphism. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 7 / 16

  31. Basic idea of the proof of decorrelation lemmas Let J L = E 0 + L − d ( − 1 , 1 ) and J ′ L = E ′ 0 + L − d ( − 1 , 1 ) . By Minami’s estimate # [ σ ( H ω ( Λ ℓ )) ∩ J L ] ≥ 2 or # [ σ ( H ω ( Λ ℓ )) ∩ J ′ ≤ C ( ℓ/ L ) 2 d � � P L ] ≥ 2 # [ σ ( H ω ( Λ ℓ )) ∩ J L ] = 1 , # [ σ ( H ω ( Λ ℓ )) ∩ J ′ � � If P 0 = P L ] = 1 , suffices to show that P 0 ≤ C ( ℓ/ L ) 2 d e ( log L ) β . Let E j ( ω ) and E k ( ω ) be the eigenvalues resp. in J L and J ′ L . Need to show that they don’t vary “synchronously”. Basic idea: find random variables ( ω γ , ω γ ′ ) such that ψ : ( ω γ , ω γ ′ ) �→ ( E j ( ω ) , E k ( ω )) be a local diffeomorphism. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 7 / 16

  32. Basic idea of the proof of decorrelation lemmas Let J L = E 0 + L − d ( − 1 , 1 ) and J ′ L = E ′ 0 + L − d ( − 1 , 1 ) . By Minami’s estimate # [ σ ( H ω ( Λ ℓ )) ∩ J L ] ≥ 2 or # [ σ ( H ω ( Λ ℓ )) ∩ J ′ ≤ C ( ℓ/ L ) 2 d � � P L ] ≥ 2 # [ σ ( H ω ( Λ ℓ )) ∩ J L ] = 1 , # [ σ ( H ω ( Λ ℓ )) ∩ J ′ � � If P 0 = P L ] = 1 , suffices to show that P 0 ≤ C ( ℓ/ L ) 2 d e ( log L ) β . Let E j ( ω ) and E k ( ω ) be the eigenvalues resp. in J L and J ′ L . Need to show that they don’t vary “synchronously”. Basic idea: find random variables ( ω γ , ω γ ′ ) such that ψ : ( ω γ , ω γ ′ ) �→ ( E j ( ω ) , E k ( ω )) be a local diffeomorphism. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 7 / 16

  33. Basic idea of the proof of decorrelation lemmas Let J L = E 0 + L − d ( − 1 , 1 ) and J ′ L = E ′ 0 + L − d ( − 1 , 1 ) . By Minami’s estimate # [ σ ( H ω ( Λ ℓ )) ∩ J L ] ≥ 2 or # [ σ ( H ω ( Λ ℓ )) ∩ J ′ ≤ C ( ℓ/ L ) 2 d � � P L ] ≥ 2 # [ σ ( H ω ( Λ ℓ )) ∩ J L ] = 1 , # [ σ ( H ω ( Λ ℓ )) ∩ J ′ � � If P 0 = P L ] = 1 , suffices to show that P 0 ≤ C ( ℓ/ L ) 2 d e ( log L ) β . Let E j ( ω ) and E k ( ω ) be the eigenvalues resp. in J L and J ′ L . Need to show that they don’t vary “synchronously”. Basic idea: find random variables ( ω γ , ω γ ′ ) such that ψ : ( ω γ , ω γ ′ ) �→ ( E j ( ω ) , E k ( ω )) be a local diffeomorphism. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 7 / 16

  34. Basic idea of the proof of decorrelation lemmas Let J L = E 0 + L − d ( − 1 , 1 ) and J ′ L = E ′ 0 + L − d ( − 1 , 1 ) . By Minami’s estimate # [ σ ( H ω ( Λ ℓ )) ∩ J L ] ≥ 2 or # [ σ ( H ω ( Λ ℓ )) ∩ J ′ ≤ C ( ℓ/ L ) 2 d � � P L ] ≥ 2 # [ σ ( H ω ( Λ ℓ )) ∩ J L ] = 1 , # [ σ ( H ω ( Λ ℓ )) ∩ J ′ � � If P 0 = P L ] = 1 , suffices to show that P 0 ≤ C ( ℓ/ L ) 2 d e ( log L ) β . Let E j ( ω ) and E k ( ω ) be the eigenvalues resp. in J L and J ′ L . Need to show that they don’t vary “synchronously”. Basic idea: find random variables ( ω γ , ω γ ′ ) such that ψ : ( ω γ , ω γ ′ ) �→ ( E j ( ω ) , E k ( ω )) be a local diffeomorphism. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 7 / 16

  35. Basic idea of the proof of decorrelation lemmas Let J L = E 0 + L − d ( − 1 , 1 ) and J ′ L = E ′ 0 + L − d ( − 1 , 1 ) . By Minami’s estimate # [ σ ( H ω ( Λ ℓ )) ∩ J L ] ≥ 2 or # [ σ ( H ω ( Λ ℓ )) ∩ J ′ ≤ C ( ℓ/ L ) 2 d � � P L ] ≥ 2 # [ σ ( H ω ( Λ ℓ )) ∩ J L ] = 1 , # [ σ ( H ω ( Λ ℓ )) ∩ J ′ � � If P 0 = P L ] = 1 , suffices to show that P 0 ≤ C ( ℓ/ L ) 2 d e ( log L ) β . Let E j ( ω ) and E k ( ω ) be the eigenvalues resp. in J L and J ′ L . Need to show that they don’t vary “synchronously”. Basic idea: find random variables ( ω γ , ω γ ′ ) such that ψ : ( ω γ , ω γ ′ ) �→ ( E j ( ω ) , E k ( ω )) be a local diffeomorphism. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 7 / 16

  36. Basic idea of the proof of decorrelation lemmas Let J L = E 0 + L − d ( − 1 , 1 ) and J ′ L = E ′ 0 + L − d ( − 1 , 1 ) . By Minami’s estimate # [ σ ( H ω ( Λ ℓ )) ∩ J L ] ≥ 2 or # [ σ ( H ω ( Λ ℓ )) ∩ J ′ ≤ C ( ℓ/ L ) 2 d � � P L ] ≥ 2 # [ σ ( H ω ( Λ ℓ )) ∩ J L ] = 1 , # [ σ ( H ω ( Λ ℓ )) ∩ J ′ � � If P 0 = P L ] = 1 , suffices to show that P 0 ≤ C ( ℓ/ L ) 2 d e ( log L ) β . Let E j ( ω ) and E k ( ω ) be the eigenvalues resp. in J L and J ′ L . Need to show that they don’t vary “synchronously”. Basic idea: find random variables ( ω γ , ω γ ′ ) such that ψ : ( ω γ , ω γ ′ ) �→ ( E j ( ω ) , E k ( ω )) be a local diffeomorphism. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 7 / 16

  37. Problem: even if | Jac ψ | ≍ 1, one has L − 2 d ≍ ℓ 4 d / L 2 d . Proba ≤ ∑ j , k ∑ γ , γ ′ We need to reduce the volume of the cube Λ ℓ . Reduction to localization boxes: This can be done using localization. Lemma There exists C > 0 such that for L sufficiently large P 0 ≤ C ( ℓ/ L ) 2 d + C ( ℓ/ ˜ ℓ ) d P 1 where J ′ ℓ )) ∩ ˜ ℓ )) ∩ ˜ P 1 : = P ( # [ σ ( H ω ( Λ ˜ J L ] = # [ σ ( H ω ( Λ ˜ L ] = 1 ) ˜ ˜ J L = J L +[ − L − d , L − d ] J ′ ˜ L = J ′ L +[ − L − d , L − d ] ℓ ≍ log L, and Idea of proof: if e.v. distinct loc. centers, use Wegner and spacial independence. As localization boxes of size ˜ ℓ , remains to estimate P 1 . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 8 / 16

  38. Problem: even if | Jac ψ | ≍ 1, one has L − 2 d ≍ ℓ 4 d / L 2 d . Proba ≤ ∑ j , k ∑ γ , γ ′ We need to reduce the volume of the cube Λ ℓ . Reduction to localization boxes: This can be done using localization. Lemma There exists C > 0 such that for L sufficiently large P 0 ≤ C ( ℓ/ L ) 2 d + C ( ℓ/ ˜ ℓ ) d P 1 where J ′ ℓ )) ∩ ˜ ℓ )) ∩ ˜ P 1 : = P ( # [ σ ( H ω ( Λ ˜ J L ] = # [ σ ( H ω ( Λ ˜ L ] = 1 ) ˜ ˜ J L = J L +[ − L − d , L − d ] J ′ ˜ L = J ′ L +[ − L − d , L − d ] ℓ ≍ log L, and Idea of proof: if e.v. distinct loc. centers, use Wegner and spacial independence. As localization boxes of size ˜ ℓ , remains to estimate P 1 . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 8 / 16

  39. Problem: even if | Jac ψ | ≍ 1, one has L − 2 d ≍ ℓ 4 d / L 2 d . Proba ≤ ∑ j , k ∑ γ , γ ′ We need to reduce the volume of the cube Λ ℓ . Reduction to localization boxes: This can be done using localization. Lemma There exists C > 0 such that for L sufficiently large P 0 ≤ C ( ℓ/ L ) 2 d + C ( ℓ/ ˜ ℓ ) d P 1 where J ′ ℓ )) ∩ ˜ ℓ )) ∩ ˜ P 1 : = P ( # [ σ ( H ω ( Λ ˜ J L ] = # [ σ ( H ω ( Λ ˜ L ] = 1 ) ˜ ˜ J L = J L +[ − L − d , L − d ] J ′ ˜ L = J ′ L +[ − L − d , L − d ] ℓ ≍ log L, and Idea of proof: if e.v. distinct loc. centers, use Wegner and spacial independence. As localization boxes of size ˜ ℓ , remains to estimate P 1 . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 8 / 16

  40. Problem: even if | Jac ψ | ≍ 1, one has L − 2 d ≍ ℓ 4 d / L 2 d . Proba ≤ ∑ j , k ∑ γ , γ ′ We need to reduce the volume of the cube Λ ℓ . Reduction to localization boxes: This can be done using localization. Lemma There exists C > 0 such that for L sufficiently large P 0 ≤ C ( ℓ/ L ) 2 d + C ( ℓ/ ˜ ℓ ) d P 1 where J ′ ℓ )) ∩ ˜ ℓ )) ∩ ˜ P 1 : = P ( # [ σ ( H ω ( Λ ˜ J L ] = # [ σ ( H ω ( Λ ˜ L ] = 1 ) ˜ ˜ J L = J L +[ − L − d , L − d ] J ′ ˜ L = J ′ L +[ − L − d , L − d ] ℓ ≍ log L, and Idea of proof: if e.v. distinct loc. centers, use Wegner and spacial independence. As localization boxes of size ˜ ℓ , remains to estimate P 1 . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 8 / 16

  41. Problem: even if | Jac ψ | ≍ 1, one has L − 2 d ≍ ℓ 4 d / L 2 d . Proba ≤ ∑ j , k ∑ γ , γ ′ We need to reduce the volume of the cube Λ ℓ . Reduction to localization boxes: This can be done using localization. Lemma There exists C > 0 such that for L sufficiently large P 0 ≤ C ( ℓ/ L ) 2 d + C ( ℓ/ ˜ ℓ ) d P 1 where J ′ ℓ )) ∩ ˜ ℓ )) ∩ ˜ P 1 : = P ( # [ σ ( H ω ( Λ ˜ J L ] = # [ σ ( H ω ( Λ ˜ L ] = 1 ) ˜ ˜ J L = J L +[ − L − d , L − d ] J ′ ˜ L = J ′ L +[ − L − d , L − d ] ℓ ≍ log L, and Idea of proof: if e.v. distinct loc. centers, use Wegner and spacial independence. As localization boxes of size ˜ ℓ , remains to estimate P 1 . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 8 / 16

  42. Problem: even if | Jac ψ | ≍ 1, one has L − 2 d ≍ ℓ 4 d / L 2 d . Proba ≤ ∑ j , k ∑ γ , γ ′ We need to reduce the volume of the cube Λ ℓ . Reduction to localization boxes: This can be done using localization. Lemma There exists C > 0 such that for L sufficiently large P 0 ≤ C ( ℓ/ L ) 2 d + C ( ℓ/ ˜ ℓ ) d P 1 where J ′ ℓ )) ∩ ˜ ℓ )) ∩ ˜ P 1 : = P ( # [ σ ( H ω ( Λ ˜ J L ] = # [ σ ( H ω ( Λ ˜ L ] = 1 ) ˜ ˜ J L = J L +[ − L − d , L − d ] J ′ ˜ L = J ′ L +[ − L − d , L − d ] ℓ ≍ log L, and Idea of proof: if e.v. distinct loc. centers, use Wegner and spacial independence. As localization boxes of size ˜ ℓ , remains to estimate P 1 . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 8 / 16

  43. Problem: even if | Jac ψ | ≍ 1, one has L − 2 d ≍ ℓ 4 d / L 2 d . Proba ≤ ∑ j , k ∑ γ , γ ′ We need to reduce the volume of the cube Λ ℓ . Reduction to localization boxes: This can be done using localization. Lemma There exists C > 0 such that for L sufficiently large P 0 ≤ C ( ℓ/ L ) 2 d + C ( ℓ/ ˜ ℓ ) d P 1 where J ′ ℓ )) ∩ ˜ ℓ )) ∩ ˜ P 1 : = P ( # [ σ ( H ω ( Λ ˜ J L ] = # [ σ ( H ω ( Λ ˜ L ] = 1 ) ˜ ˜ J L = J L +[ − L − d , L − d ] J ′ ˜ L = J ′ L +[ − L − d , L − d ] ℓ ≍ log L, and Idea of proof: if e.v. distinct loc. centers, use Wegner and spacial independence. As localization boxes of size ˜ ℓ , remains to estimate P 1 . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 8 / 16

  44. Problem: even if | Jac ψ | ≍ 1, one has L − 2 d ≍ ℓ 4 d / L 2 d . Proba ≤ ∑ j , k ∑ γ , γ ′ We need to reduce the volume of the cube Λ ℓ . Reduction to localization boxes: This can be done using localization. Lemma There exists C > 0 such that for L sufficiently large P 0 ≤ C ( ℓ/ L ) 2 d + C ( ℓ/ ˜ ℓ ) d P 1 where J ′ ℓ )) ∩ ˜ ℓ )) ∩ ˜ P 1 : = P ( # [ σ ( H ω ( Λ ˜ J L ] = # [ σ ( H ω ( Λ ˜ L ] = 1 ) ˜ ˜ J L = J L +[ − L − d , L − d ] J ′ ˜ L = J ′ L +[ − L − d , L − d ] ℓ ≍ log L, and Idea of proof: if e.v. distinct loc. centers, use Wegner and spacial independence. As localization boxes of size ˜ ℓ , remains to estimate P 1 . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 8 / 16

  45. Problem: even if | Jac ψ | ≍ 1, one has L − 2 d ≍ ℓ 4 d / L 2 d . Proba ≤ ∑ j , k ∑ γ , γ ′ We need to reduce the volume of the cube Λ ℓ . Reduction to localization boxes: This can be done using localization. Lemma There exists C > 0 such that for L sufficiently large P 0 ≤ C ( ℓ/ L ) 2 d + C ( ℓ/ ˜ ℓ ) d P 1 where J ′ ℓ )) ∩ ˜ ℓ )) ∩ ˜ P 1 : = P ( # [ σ ( H ω ( Λ ˜ J L ] = # [ σ ( H ω ( Λ ˜ L ] = 1 ) ˜ ˜ J L = J L +[ − L − d , L − d ] J ′ ˜ L = J ′ L +[ − L − d , L − d ] ℓ ≍ log L, and Idea of proof: if e.v. distinct loc. centers, use Wegner and spacial independence. As localization boxes of size ˜ ℓ , remains to estimate P 1 . F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 8 / 16

  46. Analysis on a localization box Let ω �→ E ( ω ) be the e.v of H ω ( Λ ˜ ℓ ) in J L . E ( ω ) being simple, ω �→ E ( ω ) and the ass. eigenvect. ω �→ ϕ ( ω ) analytic; 1 ∂ ω γ E ( ω ) = � π γ ϕ ( ω ) , ϕ ( ω ) � ≥ 0 ; hence � ∇ ω E ( ω ) � ℓ 1 = 1; 2 ℓ ) − E ( ω )) − 1 ψ γ ( ω ) , ψ β ( ω ) � Hess ω E ( ω ) = (( h γβ )) γ , β , h γ , β = − 2Re � ( H ω ( Λ ˜ 3 where ◮ ψ γ = Π ( ω ) π γ ϕ ( ω ) , ◮ Π ( ω ) is the orthogonal projector on the orthogonal to ϕ ( ω ) . Lemma C � Hess ω ( E ( ω )) � ℓ ∞ → ℓ 1 ≤ ℓ )) \{ E ( ω ) } ) . dist ( E ( ω ) , σ ( H ω ( Λ ˜ Hence, by Minami’s estimate Lemma ℓ 2 d L − d + P ε where P ε = P ( Ω 0 ( ε )) and For ε ∈ ( 4 L − d , 1 ) , one has P 1 ≤ C ε ˜ � � ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ J L = { E ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ( E − C ε , E + C ε ) , Ω 0 ( ε ) = ω ; ℓ )) ∩ ( E ′ − C ε , E ′ + C ε ) J ′ L = { E ′ ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 9 / 16

  47. Analysis on a localization box Let ω �→ E ( ω ) be the e.v of H ω ( Λ ˜ ℓ ) in J L . E ( ω ) being simple, ω �→ E ( ω ) and the ass. eigenvect. ω �→ ϕ ( ω ) analytic; 1 ∂ ω γ E ( ω ) = � π γ ϕ ( ω ) , ϕ ( ω ) � ≥ 0 ; hence � ∇ ω E ( ω ) � ℓ 1 = 1; 2 ℓ ) − E ( ω )) − 1 ψ γ ( ω ) , ψ β ( ω ) � Hess ω E ( ω ) = (( h γβ )) γ , β , h γ , β = − 2Re � ( H ω ( Λ ˜ 3 where ◮ ψ γ = Π ( ω ) π γ ϕ ( ω ) , ◮ Π ( ω ) is the orthogonal projector on the orthogonal to ϕ ( ω ) . Lemma C � Hess ω ( E ( ω )) � ℓ ∞ → ℓ 1 ≤ ℓ )) \{ E ( ω ) } ) . dist ( E ( ω ) , σ ( H ω ( Λ ˜ Hence, by Minami’s estimate Lemma ℓ 2 d L − d + P ε where P ε = P ( Ω 0 ( ε )) and For ε ∈ ( 4 L − d , 1 ) , one has P 1 ≤ C ε ˜ � � ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ J L = { E ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ( E − C ε , E + C ε ) , Ω 0 ( ε ) = ω ; ℓ )) ∩ ( E ′ − C ε , E ′ + C ε ) J ′ L = { E ′ ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 9 / 16

  48. Analysis on a localization box Let ω �→ E ( ω ) be the e.v of H ω ( Λ ˜ ℓ ) in J L . E ( ω ) being simple, ω �→ E ( ω ) and the ass. eigenvect. ω �→ ϕ ( ω ) analytic; 1 ∂ ω γ E ( ω ) = � π γ ϕ ( ω ) , ϕ ( ω ) � ≥ 0 ; hence � ∇ ω E ( ω ) � ℓ 1 = 1; 2 ℓ ) − E ( ω )) − 1 ψ γ ( ω ) , ψ β ( ω ) � Hess ω E ( ω ) = (( h γβ )) γ , β , h γ , β = − 2Re � ( H ω ( Λ ˜ 3 where ◮ ψ γ = Π ( ω ) π γ ϕ ( ω ) , ◮ Π ( ω ) is the orthogonal projector on the orthogonal to ϕ ( ω ) . Lemma C � Hess ω ( E ( ω )) � ℓ ∞ → ℓ 1 ≤ ℓ )) \{ E ( ω ) } ) . dist ( E ( ω ) , σ ( H ω ( Λ ˜ Hence, by Minami’s estimate Lemma ℓ 2 d L − d + P ε where P ε = P ( Ω 0 ( ε )) and For ε ∈ ( 4 L − d , 1 ) , one has P 1 ≤ C ε ˜ � � ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ J L = { E ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ( E − C ε , E + C ε ) , Ω 0 ( ε ) = ω ; ℓ )) ∩ ( E ′ − C ε , E ′ + C ε ) J ′ L = { E ′ ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 9 / 16

  49. Analysis on a localization box Let ω �→ E ( ω ) be the e.v of H ω ( Λ ˜ ℓ ) in J L . E ( ω ) being simple, ω �→ E ( ω ) and the ass. eigenvect. ω �→ ϕ ( ω ) analytic; 1 ∂ ω γ E ( ω ) = � π γ ϕ ( ω ) , ϕ ( ω ) � ≥ 0 ; hence � ∇ ω E ( ω ) � ℓ 1 = 1; 2 ℓ ) − E ( ω )) − 1 ψ γ ( ω ) , ψ β ( ω ) � Hess ω E ( ω ) = (( h γβ )) γ , β , h γ , β = − 2Re � ( H ω ( Λ ˜ 3 where ◮ ψ γ = Π ( ω ) π γ ϕ ( ω ) , ◮ Π ( ω ) is the orthogonal projector on the orthogonal to ϕ ( ω ) . Lemma C � Hess ω ( E ( ω )) � ℓ ∞ → ℓ 1 ≤ ℓ )) \{ E ( ω ) } ) . dist ( E ( ω ) , σ ( H ω ( Λ ˜ Hence, by Minami’s estimate Lemma ℓ 2 d L − d + P ε where P ε = P ( Ω 0 ( ε )) and For ε ∈ ( 4 L − d , 1 ) , one has P 1 ≤ C ε ˜ � � ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ J L = { E ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ( E − C ε , E + C ε ) , Ω 0 ( ε ) = ω ; ℓ )) ∩ ( E ′ − C ε , E ′ + C ε ) J ′ L = { E ′ ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 9 / 16

  50. Analysis on a localization box Let ω �→ E ( ω ) be the e.v of H ω ( Λ ˜ ℓ ) in J L . E ( ω ) being simple, ω �→ E ( ω ) and the ass. eigenvect. ω �→ ϕ ( ω ) analytic; 1 ∂ ω γ E ( ω ) = � π γ ϕ ( ω ) , ϕ ( ω ) � ≥ 0 ; hence � ∇ ω E ( ω ) � ℓ 1 = 1; 2 ℓ ) − E ( ω )) − 1 ψ γ ( ω ) , ψ β ( ω ) � Hess ω E ( ω ) = (( h γβ )) γ , β , h γ , β = − 2Re � ( H ω ( Λ ˜ 3 where ◮ ψ γ = Π ( ω ) π γ ϕ ( ω ) , ◮ Π ( ω ) is the orthogonal projector on the orthogonal to ϕ ( ω ) . Lemma C � Hess ω ( E ( ω )) � ℓ ∞ → ℓ 1 ≤ ℓ )) \{ E ( ω ) } ) . dist ( E ( ω ) , σ ( H ω ( Λ ˜ Hence, by Minami’s estimate Lemma ℓ 2 d L − d + P ε where P ε = P ( Ω 0 ( ε )) and For ε ∈ ( 4 L − d , 1 ) , one has P 1 ≤ C ε ˜ � � ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ J L = { E ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ( E − C ε , E + C ε ) , Ω 0 ( ε ) = ω ; ℓ )) ∩ ( E ′ − C ε , E ′ + C ε ) J ′ L = { E ′ ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 9 / 16

  51. Analysis on a localization box Let ω �→ E ( ω ) be the e.v of H ω ( Λ ˜ ℓ ) in J L . E ( ω ) being simple, ω �→ E ( ω ) and the ass. eigenvect. ω �→ ϕ ( ω ) analytic; 1 ∂ ω γ E ( ω ) = � π γ ϕ ( ω ) , ϕ ( ω ) � ≥ 0 ; hence � ∇ ω E ( ω ) � ℓ 1 = 1; 2 ℓ ) − E ( ω )) − 1 ψ γ ( ω ) , ψ β ( ω ) � Hess ω E ( ω ) = (( h γβ )) γ , β , h γ , β = − 2Re � ( H ω ( Λ ˜ 3 where ◮ ψ γ = Π ( ω ) π γ ϕ ( ω ) , ◮ Π ( ω ) is the orthogonal projector on the orthogonal to ϕ ( ω ) . Lemma C � Hess ω ( E ( ω )) � ℓ ∞ → ℓ 1 ≤ ℓ )) \{ E ( ω ) } ) . dist ( E ( ω ) , σ ( H ω ( Λ ˜ Hence, by Minami’s estimate Lemma ℓ 2 d L − d + P ε where P ε = P ( Ω 0 ( ε )) and For ε ∈ ( 4 L − d , 1 ) , one has P 1 ≤ C ε ˜ � � ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ J L = { E ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ( E − C ε , E + C ε ) , Ω 0 ( ε ) = ω ; ℓ )) ∩ ( E ′ − C ε , E ′ + C ε ) J ′ L = { E ′ ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 9 / 16

  52. Analysis on a localization box Let ω �→ E ( ω ) be the e.v of H ω ( Λ ˜ ℓ ) in J L . E ( ω ) being simple, ω �→ E ( ω ) and the ass. eigenvect. ω �→ ϕ ( ω ) analytic; 1 ∂ ω γ E ( ω ) = � π γ ϕ ( ω ) , ϕ ( ω ) � ≥ 0 ; hence � ∇ ω E ( ω ) � ℓ 1 = 1; 2 ℓ ) − E ( ω )) − 1 ψ γ ( ω ) , ψ β ( ω ) � Hess ω E ( ω ) = (( h γβ )) γ , β , h γ , β = − 2Re � ( H ω ( Λ ˜ 3 where ◮ ψ γ = Π ( ω ) π γ ϕ ( ω ) , ◮ Π ( ω ) is the orthogonal projector on the orthogonal to ϕ ( ω ) . Lemma C � Hess ω ( E ( ω )) � ℓ ∞ → ℓ 1 ≤ ℓ )) \{ E ( ω ) } ) . dist ( E ( ω ) , σ ( H ω ( Λ ˜ Hence, by Minami’s estimate Lemma ℓ 2 d L − d + P ε where P ε = P ( Ω 0 ( ε )) and For ε ∈ ( 4 L − d , 1 ) , one has P 1 ≤ C ε ˜ � � ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ J L = { E ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ( E − C ε , E + C ε ) , Ω 0 ( ε ) = ω ; ℓ )) ∩ ( E ′ − C ε , E ′ + C ε ) J ′ L = { E ′ ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 9 / 16

  53. Analysis on a localization box Let ω �→ E ( ω ) be the e.v of H ω ( Λ ˜ ℓ ) in J L . E ( ω ) being simple, ω �→ E ( ω ) and the ass. eigenvect. ω �→ ϕ ( ω ) analytic; 1 ∂ ω γ E ( ω ) = � π γ ϕ ( ω ) , ϕ ( ω ) � ≥ 0 ; hence � ∇ ω E ( ω ) � ℓ 1 = 1; 2 ℓ ) − E ( ω )) − 1 ψ γ ( ω ) , ψ β ( ω ) � Hess ω E ( ω ) = (( h γβ )) γ , β , h γ , β = − 2Re � ( H ω ( Λ ˜ 3 where ◮ ψ γ = Π ( ω ) π γ ϕ ( ω ) , ◮ Π ( ω ) is the orthogonal projector on the orthogonal to ϕ ( ω ) . Lemma C � Hess ω ( E ( ω )) � ℓ ∞ → ℓ 1 ≤ ℓ )) \{ E ( ω ) } ) . dist ( E ( ω ) , σ ( H ω ( Λ ˜ Hence, by Minami’s estimate Lemma ℓ 2 d L − d + P ε where P ε = P ( Ω 0 ( ε )) and For ε ∈ ( 4 L − d , 1 ) , one has P 1 ≤ C ε ˜ � � ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ J L = { E ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ( E − C ε , E + C ε ) , Ω 0 ( ε ) = ω ; ℓ )) ∩ ( E ′ − C ε , E ′ + C ε ) J ′ L = { E ′ ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 9 / 16

  54. Analysis on a localization box Let ω �→ E ( ω ) be the e.v of H ω ( Λ ˜ ℓ ) in J L . E ( ω ) being simple, ω �→ E ( ω ) and the ass. eigenvect. ω �→ ϕ ( ω ) analytic; 1 ∂ ω γ E ( ω ) = � π γ ϕ ( ω ) , ϕ ( ω ) � ≥ 0 ; hence � ∇ ω E ( ω ) � ℓ 1 = 1; 2 ℓ ) − E ( ω )) − 1 ψ γ ( ω ) , ψ β ( ω ) � Hess ω E ( ω ) = (( h γβ )) γ , β , h γ , β = − 2Re � ( H ω ( Λ ˜ 3 where ◮ ψ γ = Π ( ω ) π γ ϕ ( ω ) , ◮ Π ( ω ) is the orthogonal projector on the orthogonal to ϕ ( ω ) . Lemma C � Hess ω ( E ( ω )) � ℓ ∞ → ℓ 1 ≤ ℓ )) \{ E ( ω ) } ) . dist ( E ( ω ) , σ ( H ω ( Λ ˜ Hence, by Minami’s estimate Lemma ℓ 2 d L − d + P ε where P ε = P ( Ω 0 ( ε )) and For ε ∈ ( 4 L − d , 1 ) , one has P 1 ≤ C ε ˜ � � ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ J L = { E ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ( E − C ε , E + C ε ) , Ω 0 ( ε ) = ω ; ℓ )) ∩ ( E ′ − C ε , E ′ + C ε ) J ′ L = { E ′ ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 9 / 16

  55. Analysis on a localization box Let ω �→ E ( ω ) be the e.v of H ω ( Λ ˜ ℓ ) in J L . E ( ω ) being simple, ω �→ E ( ω ) and the ass. eigenvect. ω �→ ϕ ( ω ) analytic; 1 ∂ ω γ E ( ω ) = � π γ ϕ ( ω ) , ϕ ( ω ) � ≥ 0 ; hence � ∇ ω E ( ω ) � ℓ 1 = 1; 2 ℓ ) − E ( ω )) − 1 ψ γ ( ω ) , ψ β ( ω ) � Hess ω E ( ω ) = (( h γβ )) γ , β , h γ , β = − 2Re � ( H ω ( Λ ˜ 3 where ◮ ψ γ = Π ( ω ) π γ ϕ ( ω ) , ◮ Π ( ω ) is the orthogonal projector on the orthogonal to ϕ ( ω ) . Lemma C � Hess ω ( E ( ω )) � ℓ ∞ → ℓ 1 ≤ ℓ )) \{ E ( ω ) } ) . dist ( E ( ω ) , σ ( H ω ( Λ ˜ Hence, by Minami’s estimate Lemma ℓ 2 d L − d + P ε where P ε = P ( Ω 0 ( ε )) and For ε ∈ ( 4 L − d , 1 ) , one has P 1 ≤ C ε ˜ � � ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ J L = { E ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ( E − C ε , E + C ε ) , Ω 0 ( ε ) = ω ; ℓ )) ∩ ( E ′ − C ε , E ′ + C ε ) J ′ L = { E ′ ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 9 / 16

  56. Analysis on a localization box Let ω �→ E ( ω ) be the e.v of H ω ( Λ ˜ ℓ ) in J L . E ( ω ) being simple, ω �→ E ( ω ) and the ass. eigenvect. ω �→ ϕ ( ω ) analytic; 1 ∂ ω γ E ( ω ) = � π γ ϕ ( ω ) , ϕ ( ω ) � ≥ 0 ; hence � ∇ ω E ( ω ) � ℓ 1 = 1; 2 ℓ ) − E ( ω )) − 1 ψ γ ( ω ) , ψ β ( ω ) � Hess ω E ( ω ) = (( h γβ )) γ , β , h γ , β = − 2Re � ( H ω ( Λ ˜ 3 where ◮ ψ γ = Π ( ω ) π γ ϕ ( ω ) , ◮ Π ( ω ) is the orthogonal projector on the orthogonal to ϕ ( ω ) . Lemma C � Hess ω ( E ( ω )) � ℓ ∞ → ℓ 1 ≤ ℓ )) \{ E ( ω ) } ) . dist ( E ( ω ) , σ ( H ω ( Λ ˜ Hence, by Minami’s estimate Lemma ℓ 2 d L − d + P ε where P ε = P ( Ω 0 ( ε )) and For ε ∈ ( 4 L − d , 1 ) , one has P 1 ≤ C ε ˜ � � ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ J L = { E ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ( E − C ε , E + C ε ) , Ω 0 ( ε ) = ω ; ℓ )) ∩ ( E ′ − C ε , E ′ + C ε ) J ′ L = { E ′ ( ω ) } = σ ( H ω ( Λ ˜ ℓ )) ∩ ˜ σ ( H ω ( Λ ˜ F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 9 / 16

  57. To estimate the Jac ( ψ ) , need to show that ∇ ω E ( ω ) and ∇ ω E ′ ( ω ) not colinear as Lemma 2 � � 1 u j u k Pick ( u , v ) ∈ ( R + ) 2 n such that � u � 1 = � v � 1 = 1 . Then max 2 n 3 � u − v � 2 � � ≥ 1 . � � v j v k j � = k � � Difficulty : gradient may be colinear e.g. for ω = 0. The fundamental estimate: Lemma In any dimension d: for ∆ E > 2 d, if the random variables ( ω γ ) γ ∈ Λ are bounded 1 by K, for E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E j ( ω ) | ≥ ∆ E, one has � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 ≥ ∆ E − 2 d L − d / 2 ; K in dimension 1: fix E < E ′ and β > 1 / 2 ; let P denote the probability that there 2 exists E j ( ω ) and E k ( ω ) , simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ e − L β and such that � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≤ e − L β ; P ≤ e − cL 2 β . then, there exists c > 0 such that F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 10 / 16

  58. To estimate the Jac ( ψ ) , need to show that ∇ ω E ( ω ) and ∇ ω E ′ ( ω ) not colinear as Lemma 2 � � 1 u j u k Pick ( u , v ) ∈ ( R + ) 2 n such that � u � 1 = � v � 1 = 1 . Then max 2 n 3 � u − v � 2 � � ≥ 1 . � � v j v k j � = k � � Difficulty : gradient may be colinear e.g. for ω = 0. The fundamental estimate: Lemma In any dimension d: for ∆ E > 2 d, if the random variables ( ω γ ) γ ∈ Λ are bounded 1 by K, for E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E j ( ω ) | ≥ ∆ E, one has � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 ≥ ∆ E − 2 d L − d / 2 ; K in dimension 1: fix E < E ′ and β > 1 / 2 ; let P denote the probability that there 2 exists E j ( ω ) and E k ( ω ) , simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ e − L β and such that � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≤ e − L β ; P ≤ e − cL 2 β . then, there exists c > 0 such that F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 10 / 16

  59. To estimate the Jac ( ψ ) , need to show that ∇ ω E ( ω ) and ∇ ω E ′ ( ω ) not colinear as Lemma 2 � � 1 u j u k Pick ( u , v ) ∈ ( R + ) 2 n such that � u � 1 = � v � 1 = 1 . Then max 2 n 3 � u − v � 2 � � ≥ 1 . � � v j v k j � = k � � Difficulty : gradient may be colinear e.g. for ω = 0. The fundamental estimate: Lemma In any dimension d: for ∆ E > 2 d, if the random variables ( ω γ ) γ ∈ Λ are bounded 1 by K, for E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E j ( ω ) | ≥ ∆ E, one has � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 ≥ ∆ E − 2 d L − d / 2 ; K in dimension 1: fix E < E ′ and β > 1 / 2 ; let P denote the probability that there 2 exists E j ( ω ) and E k ( ω ) , simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ e − L β and such that � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≤ e − L β ; P ≤ e − cL 2 β . then, there exists c > 0 such that F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 10 / 16

  60. To estimate the Jac ( ψ ) , need to show that ∇ ω E ( ω ) and ∇ ω E ′ ( ω ) not colinear as Lemma 2 � � 1 u j u k Pick ( u , v ) ∈ ( R + ) 2 n such that � u � 1 = � v � 1 = 1 . Then max 2 n 3 � u − v � 2 � � ≥ 1 . � � v j v k j � = k � � Difficulty : gradient may be colinear e.g. for ω = 0. The fundamental estimate: Lemma In any dimension d: for ∆ E > 2 d, if the random variables ( ω γ ) γ ∈ Λ are bounded 1 by K, for E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E j ( ω ) | ≥ ∆ E, one has � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 ≥ ∆ E − 2 d L − d / 2 ; K in dimension 1: fix E < E ′ and β > 1 / 2 ; let P denote the probability that there 2 exists E j ( ω ) and E k ( ω ) , simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ e − L β and such that � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≤ e − L β ; P ≤ e − cL 2 β . then, there exists c > 0 such that F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 10 / 16

  61. To estimate the Jac ( ψ ) , need to show that ∇ ω E ( ω ) and ∇ ω E ′ ( ω ) not colinear as Lemma 2 � � 1 u j u k Pick ( u , v ) ∈ ( R + ) 2 n such that � u � 1 = � v � 1 = 1 . Then max 2 n 3 � u − v � 2 � � ≥ 1 . � � v j v k j � = k � � Difficulty : gradient may be colinear e.g. for ω = 0. The fundamental estimate: Lemma In any dimension d: for ∆ E > 2 d, if the random variables ( ω γ ) γ ∈ Λ are bounded 1 by K, for E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E j ( ω ) | ≥ ∆ E, one has � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 ≥ ∆ E − 2 d L − d / 2 ; K in dimension 1: fix E < E ′ and β > 1 / 2 ; let P denote the probability that there 2 exists E j ( ω ) and E k ( ω ) , simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ e − L β and such that � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≤ e − L β ; P ≤ e − cL 2 β . then, there exists c > 0 such that F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 10 / 16

  62. To estimate the Jac ( ψ ) , need to show that ∇ ω E ( ω ) and ∇ ω E ′ ( ω ) not colinear as Lemma 2 � � 1 u j u k Pick ( u , v ) ∈ ( R + ) 2 n such that � u � 1 = � v � 1 = 1 . Then max 2 n 3 � u − v � 2 � � ≥ 1 . � � v j v k j � = k � � Difficulty : gradient may be colinear e.g. for ω = 0. The fundamental estimate: Lemma In any dimension d: for ∆ E > 2 d, if the random variables ( ω γ ) γ ∈ Λ are bounded 1 by K, for E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E j ( ω ) | ≥ ∆ E, one has � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 ≥ ∆ E − 2 d L − d / 2 ; K in dimension 1: fix E < E ′ and β > 1 / 2 ; let P denote the probability that there 2 exists E j ( ω ) and E k ( ω ) , simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ e − L β and such that � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≤ e − L β ; P ≤ e − cL 2 β . then, there exists c > 0 such that F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 10 / 16

  63. To estimate the Jac ( ψ ) , need to show that ∇ ω E ( ω ) and ∇ ω E ′ ( ω ) not colinear as Lemma 2 � � 1 u j u k Pick ( u , v ) ∈ ( R + ) 2 n such that � u � 1 = � v � 1 = 1 . Then max 2 n 3 � u − v � 2 � � ≥ 1 . � � v j v k j � = k � � Difficulty : gradient may be colinear e.g. for ω = 0. The fundamental estimate: Lemma In any dimension d: for ∆ E > 2 d, if the random variables ( ω γ ) γ ∈ Λ are bounded 1 by K, for E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E j ( ω ) | ≥ ∆ E, one has � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 ≥ ∆ E − 2 d L − d / 2 ; K in dimension 1: fix E < E ′ and β > 1 / 2 ; let P denote the probability that there 2 exists E j ( ω ) and E k ( ω ) , simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ e − L β and such that � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≤ e − L β ; P ≤ e − cL 2 β . then, there exists c > 0 such that F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 10 / 16

  64. To estimate the Jac ( ψ ) , need to show that ∇ ω E ( ω ) and ∇ ω E ′ ( ω ) not colinear as Lemma 2 � � 1 u j u k Pick ( u , v ) ∈ ( R + ) 2 n such that � u � 1 = � v � 1 = 1 . Then max 2 n 3 � u − v � 2 � � ≥ 1 . � � v j v k j � = k � � Difficulty : gradient may be colinear e.g. for ω = 0. The fundamental estimate: Lemma In any dimension d: for ∆ E > 2 d, if the random variables ( ω γ ) γ ∈ Λ are bounded 1 by K, for E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E j ( ω ) | ≥ ∆ E, one has � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 ≥ ∆ E − 2 d L − d / 2 ; K in dimension 1: fix E < E ′ and β > 1 / 2 ; let P denote the probability that there 2 exists E j ( ω ) and E k ( ω ) , simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ e − L β and such that � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≤ e − L β ; P ≤ e − cL 2 β . then, there exists c > 0 such that F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 10 / 16

  65. To estimate the Jac ( ψ ) , need to show that ∇ ω E ( ω ) and ∇ ω E ′ ( ω ) not colinear as Lemma 2 � � 1 u j u k Pick ( u , v ) ∈ ( R + ) 2 n such that � u � 1 = � v � 1 = 1 . Then max 2 n 3 � u − v � 2 � � ≥ 1 . � � v j v k j � = k � � Difficulty : gradient may be colinear e.g. for ω = 0. The fundamental estimate: Lemma In any dimension d: for ∆ E > 2 d, if the random variables ( ω γ ) γ ∈ Λ are bounded 1 by K, for E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E j ( ω ) | ≥ ∆ E, one has � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 ≥ ∆ E − 2 d L − d / 2 ; K in dimension 1: fix E < E ′ and β > 1 / 2 ; let P denote the probability that there 2 exists E j ( ω ) and E k ( ω ) , simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ e − L β and such that � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≤ e − L β ; P ≤ e − cL 2 β . then, there exists c > 0 such that F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 10 / 16

  66. To estimate the Jac ( ψ ) , need to show that ∇ ω E ( ω ) and ∇ ω E ′ ( ω ) not colinear as Lemma 2 � � 1 u j u k Pick ( u , v ) ∈ ( R + ) 2 n such that � u � 1 = � v � 1 = 1 . Then max 2 n 3 � u − v � 2 � � ≥ 1 . � � v j v k j � = k � � Difficulty : gradient may be colinear e.g. for ω = 0. The fundamental estimate: Lemma In any dimension d: for ∆ E > 2 d, if the random variables ( ω γ ) γ ∈ Λ are bounded 1 by K, for E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E j ( ω ) | ≥ ∆ E, one has � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 ≥ ∆ E − 2 d L − d / 2 ; K in dimension 1: fix E < E ′ and β > 1 / 2 ; let P denote the probability that there 2 exists E j ( ω ) and E k ( ω ) , simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ e − L β and such that � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≤ e − L β ; P ≤ e − cL 2 β . then, there exists c > 0 such that F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 10 / 16

  67. To estimate the Jac ( ψ ) , need to show that ∇ ω E ( ω ) and ∇ ω E ′ ( ω ) not colinear as Lemma 2 � � 1 u j u k Pick ( u , v ) ∈ ( R + ) 2 n such that � u � 1 = � v � 1 = 1 . Then max 2 n 3 � u − v � 2 � � ≥ 1 . � � v j v k j � = k � � Difficulty : gradient may be colinear e.g. for ω = 0. The fundamental estimate: Lemma In any dimension d: for ∆ E > 2 d, if the random variables ( ω γ ) γ ∈ Λ are bounded 1 by K, for E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E j ( ω ) | ≥ ∆ E, one has � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 ≥ ∆ E − 2 d L − d / 2 ; K in dimension 1: fix E < E ′ and β > 1 / 2 ; let P denote the probability that there 2 exists E j ( ω ) and E k ( ω ) , simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ e − L β and such that � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≤ e − L β ; P ≤ e − cL 2 β . then, there exists c > 0 such that F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 10 / 16

  68. To estimate the Jac ( ψ ) , need to show that ∇ ω E ( ω ) and ∇ ω E ′ ( ω ) not colinear as Lemma 2 � � 1 u j u k Pick ( u , v ) ∈ ( R + ) 2 n such that � u � 1 = � v � 1 = 1 . Then max 2 n 3 � u − v � 2 � � ≥ 1 . � � v j v k j � = k � � Difficulty : gradient may be colinear e.g. for ω = 0. The fundamental estimate: Lemma In any dimension d: for ∆ E > 2 d, if the random variables ( ω γ ) γ ∈ Λ are bounded 1 by K, for E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E j ( ω ) | ≥ ∆ E, one has � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 ≥ ∆ E − 2 d L − d / 2 ; K in dimension 1: fix E < E ′ and β > 1 / 2 ; let P denote the probability that there 2 exists E j ( ω ) and E k ( ω ) , simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ e − L β and such that � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≤ e − L β ; P ≤ e − cL 2 β . then, there exists c > 0 such that F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 10 / 16

  69. Completing the proof of the decorrelation lemma One now has P ε ≤ ∑ γ � = γ ′ P ( Ω γ , γ ′ 0 , ν ( ε ))+ P r where Ω γ , γ ′ � ω ; | J γ , γ ′ ( E ( ω ) , E ′ ( ω )) | ≥ e − ˜ ℓ β � 0 , ν ( ε ) = Ω 0 ( ε ) ∩ ; � � ∂ ω γ E ( ω ) ∂ ω γ ′ E ( ω ) � � J γ , γ ′ ( E ( ω ) , E ′ ( ω )) = � ; � � ∂ ω γ E ′ ( ω ) ∂ ω γ ′ E ′ ( ω ) � � � ℓ 2 β , thus, P r ≤ L − 2 d ; in dimension 1, we have P r ≤ Ce − c ˜ in dimension d , as by assumption ∆ E > 2 d , one has P r = 0. The estimate of Jacobian and picking ε ≍ L − d ˜ ℓ ν + 1 yields ℓ β . P ( Ω γ , γ ′ 0 , ν ( ε )) ≤ CL − 2 d e 2 ˜ Summing over ( γ , γ ′ ) ∈ Λ 2 ℓ , we obtain ˜ P ε ≤ CL − 2 d e 4 ˜ ℓ β Proof is complete. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 11 / 16

  70. Completing the proof of the decorrelation lemma One now has P ε ≤ ∑ γ � = γ ′ P ( Ω γ , γ ′ 0 , ν ( ε ))+ P r where Ω γ , γ ′ � ω ; | J γ , γ ′ ( E ( ω ) , E ′ ( ω )) | ≥ e − ˜ ℓ β � 0 , ν ( ε ) = Ω 0 ( ε ) ∩ ; � � ∂ ω γ E ( ω ) ∂ ω γ ′ E ( ω ) � � J γ , γ ′ ( E ( ω ) , E ′ ( ω )) = � ; � � ∂ ω γ E ′ ( ω ) ∂ ω γ ′ E ′ ( ω ) � � � ℓ 2 β , thus, P r ≤ L − 2 d ; in dimension 1, we have P r ≤ Ce − c ˜ in dimension d , as by assumption ∆ E > 2 d , one has P r = 0. The estimate of Jacobian and picking ε ≍ L − d ˜ ℓ ν + 1 yields ℓ β . P ( Ω γ , γ ′ 0 , ν ( ε )) ≤ CL − 2 d e 2 ˜ Summing over ( γ , γ ′ ) ∈ Λ 2 ℓ , we obtain ˜ P ε ≤ CL − 2 d e 4 ˜ ℓ β Proof is complete. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 11 / 16

  71. Completing the proof of the decorrelation lemma One now has P ε ≤ ∑ γ � = γ ′ P ( Ω γ , γ ′ 0 , ν ( ε ))+ P r where Ω γ , γ ′ � ω ; | J γ , γ ′ ( E ( ω ) , E ′ ( ω )) | ≥ e − ˜ ℓ β � 0 , ν ( ε ) = Ω 0 ( ε ) ∩ ; � � ∂ ω γ E ( ω ) ∂ ω γ ′ E ( ω ) � � J γ , γ ′ ( E ( ω ) , E ′ ( ω )) = � ; � � ∂ ω γ E ′ ( ω ) ∂ ω γ ′ E ′ ( ω ) � � � ℓ 2 β , thus, P r ≤ L − 2 d ; in dimension 1, we have P r ≤ Ce − c ˜ in dimension d , as by assumption ∆ E > 2 d , one has P r = 0. The estimate of Jacobian and picking ε ≍ L − d ˜ ℓ ν + 1 yields ℓ β . P ( Ω γ , γ ′ 0 , ν ( ε )) ≤ CL − 2 d e 2 ˜ Summing over ( γ , γ ′ ) ∈ Λ 2 ℓ , we obtain ˜ P ε ≤ CL − 2 d e 4 ˜ ℓ β Proof is complete. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 11 / 16

  72. Completing the proof of the decorrelation lemma One now has P ε ≤ ∑ γ � = γ ′ P ( Ω γ , γ ′ 0 , ν ( ε ))+ P r where Ω γ , γ ′ � ω ; | J γ , γ ′ ( E ( ω ) , E ′ ( ω )) | ≥ e − ˜ ℓ β � 0 , ν ( ε ) = Ω 0 ( ε ) ∩ ; � � ∂ ω γ E ( ω ) ∂ ω γ ′ E ( ω ) � � J γ , γ ′ ( E ( ω ) , E ′ ( ω )) = � ; � � ∂ ω γ E ′ ( ω ) ∂ ω γ ′ E ′ ( ω ) � � � ℓ 2 β , thus, P r ≤ L − 2 d ; in dimension 1, we have P r ≤ Ce − c ˜ in dimension d , as by assumption ∆ E > 2 d , one has P r = 0. The estimate of Jacobian and picking ε ≍ L − d ˜ ℓ ν + 1 yields ℓ β . P ( Ω γ , γ ′ 0 , ν ( ε )) ≤ CL − 2 d e 2 ˜ Summing over ( γ , γ ′ ) ∈ Λ 2 ℓ , we obtain ˜ P ε ≤ CL − 2 d e 4 ˜ ℓ β Proof is complete. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 11 / 16

  73. Completing the proof of the decorrelation lemma One now has P ε ≤ ∑ γ � = γ ′ P ( Ω γ , γ ′ 0 , ν ( ε ))+ P r where Ω γ , γ ′ � ω ; | J γ , γ ′ ( E ( ω ) , E ′ ( ω )) | ≥ e − ˜ ℓ β � 0 , ν ( ε ) = Ω 0 ( ε ) ∩ ; � � ∂ ω γ E ( ω ) ∂ ω γ ′ E ( ω ) � � J γ , γ ′ ( E ( ω ) , E ′ ( ω )) = � ; � � ∂ ω γ E ′ ( ω ) ∂ ω γ ′ E ′ ( ω ) � � � ℓ 2 β , thus, P r ≤ L − 2 d ; in dimension 1, we have P r ≤ Ce − c ˜ in dimension d , as by assumption ∆ E > 2 d , one has P r = 0. The estimate of Jacobian and picking ε ≍ L − d ˜ ℓ ν + 1 yields ℓ β . P ( Ω γ , γ ′ 0 , ν ( ε )) ≤ CL − 2 d e 2 ˜ Summing over ( γ , γ ′ ) ∈ Λ 2 ℓ , we obtain ˜ P ε ≤ CL − 2 d e 4 ˜ ℓ β Proof is complete. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 11 / 16

  74. Completing the proof of the decorrelation lemma One now has P ε ≤ ∑ γ � = γ ′ P ( Ω γ , γ ′ 0 , ν ( ε ))+ P r where Ω γ , γ ′ � ω ; | J γ , γ ′ ( E ( ω ) , E ′ ( ω )) | ≥ e − ˜ ℓ β � 0 , ν ( ε ) = Ω 0 ( ε ) ∩ ; � � ∂ ω γ E ( ω ) ∂ ω γ ′ E ( ω ) � � J γ , γ ′ ( E ( ω ) , E ′ ( ω )) = � ; � � ∂ ω γ E ′ ( ω ) ∂ ω γ ′ E ′ ( ω ) � � � ℓ 2 β , thus, P r ≤ L − 2 d ; in dimension 1, we have P r ≤ Ce − c ˜ in dimension d , as by assumption ∆ E > 2 d , one has P r = 0. The estimate of Jacobian and picking ε ≍ L − d ˜ ℓ ν + 1 yields ℓ β . P ( Ω γ , γ ′ 0 , ν ( ε )) ≤ CL − 2 d e 2 ˜ Summing over ( γ , γ ′ ) ∈ Λ 2 ℓ , we obtain ˜ P ε ≤ CL − 2 d e 4 ˜ ℓ β Proof is complete. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 11 / 16

  75. Completing the proof of the decorrelation lemma One now has P ε ≤ ∑ γ � = γ ′ P ( Ω γ , γ ′ 0 , ν ( ε ))+ P r where Ω γ , γ ′ � ω ; | J γ , γ ′ ( E ( ω ) , E ′ ( ω )) | ≥ e − ˜ ℓ β � 0 , ν ( ε ) = Ω 0 ( ε ) ∩ ; � � ∂ ω γ E ( ω ) ∂ ω γ ′ E ( ω ) � � J γ , γ ′ ( E ( ω ) , E ′ ( ω )) = � ; � � ∂ ω γ E ′ ( ω ) ∂ ω γ ′ E ′ ( ω ) � � � ℓ 2 β , thus, P r ≤ L − 2 d ; in dimension 1, we have P r ≤ Ce − c ˜ in dimension d , as by assumption ∆ E > 2 d , one has P r = 0. The estimate of Jacobian and picking ε ≍ L − d ˜ ℓ ν + 1 yields ℓ β . P ( Ω γ , γ ′ 0 , ν ( ε )) ≤ CL − 2 d e 2 ˜ Summing over ( γ , γ ′ ) ∈ Λ 2 ℓ , we obtain ˜ P ε ≤ CL − 2 d e 4 ˜ ℓ β Proof is complete. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 11 / 16

  76. Completing the proof of the decorrelation lemma One now has P ε ≤ ∑ γ � = γ ′ P ( Ω γ , γ ′ 0 , ν ( ε ))+ P r where Ω γ , γ ′ � ω ; | J γ , γ ′ ( E ( ω ) , E ′ ( ω )) | ≥ e − ˜ ℓ β � 0 , ν ( ε ) = Ω 0 ( ε ) ∩ ; � � ∂ ω γ E ( ω ) ∂ ω γ ′ E ( ω ) � � J γ , γ ′ ( E ( ω ) , E ′ ( ω )) = � ; � � ∂ ω γ E ′ ( ω ) ∂ ω γ ′ E ′ ( ω ) � � � ℓ 2 β , thus, P r ≤ L − 2 d ; in dimension 1, we have P r ≤ Ce − c ˜ in dimension d , as by assumption ∆ E > 2 d , one has P r = 0. The estimate of Jacobian and picking ε ≍ L − d ˜ ℓ ν + 1 yields ℓ β . P ( Ω γ , γ ′ 0 , ν ( ε )) ≤ CL − 2 d e 2 ˜ Summing over ( γ , γ ′ ) ∈ Λ 2 ℓ , we obtain ˜ P ε ≤ CL − 2 d e 4 ˜ ℓ β Proof is complete. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 11 / 16

  77. Completing the proof of the decorrelation lemma One now has P ε ≤ ∑ γ � = γ ′ P ( Ω γ , γ ′ 0 , ν ( ε ))+ P r where Ω γ , γ ′ � ω ; | J γ , γ ′ ( E ( ω ) , E ′ ( ω )) | ≥ e − ˜ ℓ β � 0 , ν ( ε ) = Ω 0 ( ε ) ∩ ; � � ∂ ω γ E ( ω ) ∂ ω γ ′ E ( ω ) � � J γ , γ ′ ( E ( ω ) , E ′ ( ω )) = � ; � � ∂ ω γ E ′ ( ω ) ∂ ω γ ′ E ′ ( ω ) � � � ℓ 2 β , thus, P r ≤ L − 2 d ; in dimension 1, we have P r ≤ Ce − c ˜ in dimension d , as by assumption ∆ E > 2 d , one has P r = 0. The estimate of Jacobian and picking ε ≍ L − d ˜ ℓ ν + 1 yields ℓ β . P ( Ω γ , γ ′ 0 , ν ( ε )) ≤ CL − 2 d e 2 ˜ Summing over ( γ , γ ′ ) ∈ Λ 2 ℓ , we obtain ˜ P ε ≤ CL − 2 d e 4 ˜ ℓ β Proof is complete. F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 11 / 16

  78. The proof of the fundamental estimate: case 1 E j ( ω ) and E k ( ω ) simple evs of H ω ( Λ L ) such that | E k ( ω ) − E j ( ω ) | ≥ ∆ E > 2 d . Then, ω �→ E j ( ω ) and ω �→ E k ( ω ) are real analytic functions. Let ω �→ ϕ j ( ω ) and ω �→ ϕ k ( ω ) be normalized eigenvec. ass. resp. to E j ( ω ) and E k ( ω ) . Differentiating the eigenvalue equation in ω , one computes ω · ∇ ω ( E j ( ω ) − E k ( ω )) = � V ω ϕ j ( ω ) , ϕ j ( ω ) �−� V ω ϕ k ( ω ) , ϕ k ( ω ) � = E j ( ω ) − E k ( ω )+ �− ∆ ϕ k ( ω ) , ϕ k ( ω ) �−�− ∆ ϕ j ( ω ) , ϕ j ( ω ) � . So ∆ E − 2 d ≤ | E j ( ω ) − E k ( ω ) |− 2 d ≤ | ω · ∇ ω ( E j ( ω ) − E k ( ω )) | . Hence, � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 ≥ ∆ E − 2 d L − d / 2 . K F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 12 / 16

  79. The proof of the fundamental estimate: case 1 E j ( ω ) and E k ( ω ) simple evs of H ω ( Λ L ) such that | E k ( ω ) − E j ( ω ) | ≥ ∆ E > 2 d . Then, ω �→ E j ( ω ) and ω �→ E k ( ω ) are real analytic functions. Let ω �→ ϕ j ( ω ) and ω �→ ϕ k ( ω ) be normalized eigenvec. ass. resp. to E j ( ω ) and E k ( ω ) . Differentiating the eigenvalue equation in ω , one computes ω · ∇ ω ( E j ( ω ) − E k ( ω )) = � V ω ϕ j ( ω ) , ϕ j ( ω ) �−� V ω ϕ k ( ω ) , ϕ k ( ω ) � = E j ( ω ) − E k ( ω )+ �− ∆ ϕ k ( ω ) , ϕ k ( ω ) �−�− ∆ ϕ j ( ω ) , ϕ j ( ω ) � . So ∆ E − 2 d ≤ | E j ( ω ) − E k ( ω ) |− 2 d ≤ | ω · ∇ ω ( E j ( ω ) − E k ( ω )) | . Hence, � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 ≥ ∆ E − 2 d L − d / 2 . K F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 12 / 16

  80. The proof of the fundamental estimate: case 1 E j ( ω ) and E k ( ω ) simple evs of H ω ( Λ L ) such that | E k ( ω ) − E j ( ω ) | ≥ ∆ E > 2 d . Then, ω �→ E j ( ω ) and ω �→ E k ( ω ) are real analytic functions. Let ω �→ ϕ j ( ω ) and ω �→ ϕ k ( ω ) be normalized eigenvec. ass. resp. to E j ( ω ) and E k ( ω ) . Differentiating the eigenvalue equation in ω , one computes ω · ∇ ω ( E j ( ω ) − E k ( ω )) = � V ω ϕ j ( ω ) , ϕ j ( ω ) �−� V ω ϕ k ( ω ) , ϕ k ( ω ) � = E j ( ω ) − E k ( ω )+ �− ∆ ϕ k ( ω ) , ϕ k ( ω ) �−�− ∆ ϕ j ( ω ) , ϕ j ( ω ) � . So ∆ E − 2 d ≤ | E j ( ω ) − E k ( ω ) |− 2 d ≤ | ω · ∇ ω ( E j ( ω ) − E k ( ω )) | . Hence, � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 ≥ ∆ E − 2 d L − d / 2 . K F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 12 / 16

  81. The proof of the fundamental estimate: case 1 E j ( ω ) and E k ( ω ) simple evs of H ω ( Λ L ) such that | E k ( ω ) − E j ( ω ) | ≥ ∆ E > 2 d . Then, ω �→ E j ( ω ) and ω �→ E k ( ω ) are real analytic functions. Let ω �→ ϕ j ( ω ) and ω �→ ϕ k ( ω ) be normalized eigenvec. ass. resp. to E j ( ω ) and E k ( ω ) . Differentiating the eigenvalue equation in ω , one computes ω · ∇ ω ( E j ( ω ) − E k ( ω )) = � V ω ϕ j ( ω ) , ϕ j ( ω ) �−� V ω ϕ k ( ω ) , ϕ k ( ω ) � = E j ( ω ) − E k ( ω )+ �− ∆ ϕ k ( ω ) , ϕ k ( ω ) �−�− ∆ ϕ j ( ω ) , ϕ j ( ω ) � . So ∆ E − 2 d ≤ | E j ( ω ) − E k ( ω ) |− 2 d ≤ | ω · ∇ ω ( E j ( ω ) − E k ( ω )) | . Hence, � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 ≥ ∆ E − 2 d L − d / 2 . K F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 12 / 16

  82. The proof of the fundamental estimate: case 1 E j ( ω ) and E k ( ω ) simple evs of H ω ( Λ L ) such that | E k ( ω ) − E j ( ω ) | ≥ ∆ E > 2 d . Then, ω �→ E j ( ω ) and ω �→ E k ( ω ) are real analytic functions. Let ω �→ ϕ j ( ω ) and ω �→ ϕ k ( ω ) be normalized eigenvec. ass. resp. to E j ( ω ) and E k ( ω ) . Differentiating the eigenvalue equation in ω , one computes ω · ∇ ω ( E j ( ω ) − E k ( ω )) = � V ω ϕ j ( ω ) , ϕ j ( ω ) �−� V ω ϕ k ( ω ) , ϕ k ( ω ) � = E j ( ω ) − E k ( ω )+ �− ∆ ϕ k ( ω ) , ϕ k ( ω ) �−�− ∆ ϕ j ( ω ) , ϕ j ( ω ) � . So ∆ E − 2 d ≤ | E j ( ω ) − E k ( ω ) |− 2 d ≤ | ω · ∇ ω ( E j ( ω ) − E k ( ω )) | . Hence, � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 ≥ ∆ E − 2 d L − d / 2 . K F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 12 / 16

  83. The proof of the fundamental estimate: case 2 Let us now assume d = 1. We prove a weaker result. Theorem Fix ν > 8 . For the discrete Anderson model in dimension 1, there exists ∆ E of total measure such that, for E − E ′ ∈ ∆ E , for L sufficiently large, if E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ L − ν then � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≥ L − ν ; Fix E < E ′ . Pick E j ( ω ) and E k ( ω ) , simple evs s.t. | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ L − α . Then, 4 L − 2 ν ≥ � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 γ ( ω ) | 2 ·| ϕ j 2 = ∑ | ϕ j γ ( ω ) − ϕ k γ ( ω )+ ϕ k γ ( ω ) | 2 γ ∈ Λ L there exists a partition of Λ L , say P ⊂ Λ L and Q ⊂ Λ L s.t. for γ ∈ P , | ϕ j γ ( ω ) − ϕ k γ ( ω ) | ≤ L − ν ; for γ ∈ Q , | ϕ j γ ( ω ) | ≤ L − ν . γ ( ω )+ ϕ k Introduce the orthogonal projectors P and Q defined by P = ∑ Q = ∑ | γ �� γ | | γ �� γ | . and γ ∈ P γ ∈ Q F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 13 / 16

  84. The proof of the fundamental estimate: case 2 Let us now assume d = 1. We prove a weaker result. Theorem Fix ν > 8 . For the discrete Anderson model in dimension 1, there exists ∆ E of total measure such that, for E − E ′ ∈ ∆ E , for L sufficiently large, if E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ L − ν then � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≥ L − ν ; Fix E < E ′ . Pick E j ( ω ) and E k ( ω ) , simple evs s.t. | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ L − α . Then, 4 L − 2 ν ≥ � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 γ ( ω ) | 2 ·| ϕ j 2 = ∑ | ϕ j γ ( ω ) − ϕ k γ ( ω )+ ϕ k γ ( ω ) | 2 γ ∈ Λ L there exists a partition of Λ L , say P ⊂ Λ L and Q ⊂ Λ L s.t. for γ ∈ P , | ϕ j γ ( ω ) − ϕ k γ ( ω ) | ≤ L − ν ; for γ ∈ Q , | ϕ j γ ( ω ) | ≤ L − ν . γ ( ω )+ ϕ k Introduce the orthogonal projectors P and Q defined by P = ∑ Q = ∑ | γ �� γ | | γ �� γ | . and γ ∈ P γ ∈ Q F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 13 / 16

  85. The proof of the fundamental estimate: case 2 Let us now assume d = 1. We prove a weaker result. Theorem Fix ν > 8 . For the discrete Anderson model in dimension 1, there exists ∆ E of total measure such that, for E − E ′ ∈ ∆ E , for L sufficiently large, if E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ L − ν then � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≥ L − ν ; Fix E < E ′ . Pick E j ( ω ) and E k ( ω ) , simple evs s.t. | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ L − α . Then, 4 L − 2 ν ≥ � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 γ ( ω ) | 2 ·| ϕ j 2 = ∑ | ϕ j γ ( ω ) − ϕ k γ ( ω )+ ϕ k γ ( ω ) | 2 γ ∈ Λ L there exists a partition of Λ L , say P ⊂ Λ L and Q ⊂ Λ L s.t. for γ ∈ P , | ϕ j γ ( ω ) − ϕ k γ ( ω ) | ≤ L − ν ; for γ ∈ Q , | ϕ j γ ( ω ) | ≤ L − ν . γ ( ω )+ ϕ k Introduce the orthogonal projectors P and Q defined by P = ∑ Q = ∑ | γ �� γ | | γ �� γ | . and γ ∈ P γ ∈ Q F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 13 / 16

  86. The proof of the fundamental estimate: case 2 Let us now assume d = 1. We prove a weaker result. Theorem Fix ν > 8 . For the discrete Anderson model in dimension 1, there exists ∆ E of total measure such that, for E − E ′ ∈ ∆ E , for L sufficiently large, if E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ L − ν then � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≥ L − ν ; Fix E < E ′ . Pick E j ( ω ) and E k ( ω ) , simple evs s.t. | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ L − α . Then, 4 L − 2 ν ≥ � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 γ ( ω ) | 2 ·| ϕ j 2 = ∑ | ϕ j γ ( ω ) − ϕ k γ ( ω )+ ϕ k γ ( ω ) | 2 γ ∈ Λ L there exists a partition of Λ L , say P ⊂ Λ L and Q ⊂ Λ L s.t. for γ ∈ P , | ϕ j γ ( ω ) − ϕ k γ ( ω ) | ≤ L − ν ; for γ ∈ Q , | ϕ j γ ( ω ) | ≤ L − ν . γ ( ω )+ ϕ k Introduce the orthogonal projectors P and Q defined by P = ∑ Q = ∑ | γ �� γ | | γ �� γ | . and γ ∈ P γ ∈ Q F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 13 / 16

  87. The proof of the fundamental estimate: case 2 Let us now assume d = 1. We prove a weaker result. Theorem Fix ν > 8 . For the discrete Anderson model in dimension 1, there exists ∆ E of total measure such that, for E − E ′ ∈ ∆ E , for L sufficiently large, if E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ L − ν then � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≥ L − ν ; Fix E < E ′ . Pick E j ( ω ) and E k ( ω ) , simple evs s.t. | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ L − α . Then, 4 L − 2 ν ≥ � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 γ ( ω ) | 2 ·| ϕ j 2 = ∑ | ϕ j γ ( ω ) − ϕ k γ ( ω )+ ϕ k γ ( ω ) | 2 γ ∈ Λ L there exists a partition of Λ L , say P ⊂ Λ L and Q ⊂ Λ L s.t. for γ ∈ P , | ϕ j γ ( ω ) − ϕ k γ ( ω ) | ≤ L − ν ; for γ ∈ Q , | ϕ j γ ( ω ) | ≤ L − ν . γ ( ω )+ ϕ k Introduce the orthogonal projectors P and Q defined by P = ∑ Q = ∑ | γ �� γ | | γ �� γ | . and γ ∈ P γ ∈ Q F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 13 / 16

  88. The proof of the fundamental estimate: case 2 Let us now assume d = 1. We prove a weaker result. Theorem Fix ν > 8 . For the discrete Anderson model in dimension 1, there exists ∆ E of total measure such that, for E − E ′ ∈ ∆ E , for L sufficiently large, if E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ L − ν then � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≥ L − ν ; Fix E < E ′ . Pick E j ( ω ) and E k ( ω ) , simple evs s.t. | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ L − α . Then, 4 L − 2 ν ≥ � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 γ ( ω ) | 2 ·| ϕ j 2 = ∑ | ϕ j γ ( ω ) − ϕ k γ ( ω )+ ϕ k γ ( ω ) | 2 γ ∈ Λ L there exists a partition of Λ L , say P ⊂ Λ L and Q ⊂ Λ L s.t. for γ ∈ P , | ϕ j γ ( ω ) − ϕ k γ ( ω ) | ≤ L − ν ; for γ ∈ Q , | ϕ j γ ( ω ) | ≤ L − ν . γ ( ω )+ ϕ k Introduce the orthogonal projectors P and Q defined by P = ∑ Q = ∑ | γ �� γ | | γ �� γ | . and γ ∈ P γ ∈ Q F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 13 / 16

  89. The proof of the fundamental estimate: case 2 Let us now assume d = 1. We prove a weaker result. Theorem Fix ν > 8 . For the discrete Anderson model in dimension 1, there exists ∆ E of total measure such that, for E − E ′ ∈ ∆ E , for L sufficiently large, if E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ L − ν then � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≥ L − ν ; Fix E < E ′ . Pick E j ( ω ) and E k ( ω ) , simple evs s.t. | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ L − α . Then, 4 L − 2 ν ≥ � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 γ ( ω ) | 2 ·| ϕ j 2 = ∑ | ϕ j γ ( ω ) − ϕ k γ ( ω )+ ϕ k γ ( ω ) | 2 γ ∈ Λ L there exists a partition of Λ L , say P ⊂ Λ L and Q ⊂ Λ L s.t. for γ ∈ P , | ϕ j γ ( ω ) − ϕ k γ ( ω ) | ≤ L − ν ; for γ ∈ Q , | ϕ j γ ( ω ) | ≤ L − ν . γ ( ω )+ ϕ k Introduce the orthogonal projectors P and Q defined by P = ∑ Q = ∑ | γ �� γ | | γ �� γ | . and γ ∈ P γ ∈ Q F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 13 / 16

  90. The proof of the fundamental estimate: case 2 Let us now assume d = 1. We prove a weaker result. Theorem Fix ν > 8 . For the discrete Anderson model in dimension 1, there exists ∆ E of total measure such that, for E − E ′ ∈ ∆ E , for L sufficiently large, if E j ( ω ) and E k ( ω ) are simple eigenvalues of H ω ( Λ L ) such that | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ L − ν then � ∇ ω ( E j ( ω ) − E k ( ω )) � 1 ≥ L − ν ; Fix E < E ′ . Pick E j ( ω ) and E k ( ω ) , simple evs s.t. | E k ( ω ) − E | + | E j ( ω ) − E ′ | ≤ L − α . Then, 4 L − 2 ν ≥ � ∇ ω ( E j ( ω ) − E k ( ω )) � 2 γ ( ω ) | 2 ·| ϕ j 2 = ∑ | ϕ j γ ( ω ) − ϕ k γ ( ω )+ ϕ k γ ( ω ) | 2 γ ∈ Λ L there exists a partition of Λ L , say P ⊂ Λ L and Q ⊂ Λ L s.t. for γ ∈ P , | ϕ j γ ( ω ) − ϕ k γ ( ω ) | ≤ L − ν ; for γ ∈ Q , | ϕ j γ ( ω ) | ≤ L − ν . γ ( ω )+ ϕ k Introduce the orthogonal projectors P and Q defined by P = ∑ Q = ∑ | γ �� γ | | γ �� γ | . and γ ∈ P γ ∈ Q F. Klopp (Universit´ e Paris 13) Decorrelation estimates Euler Institute, St Petersburg 13 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend